Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Solvation in pure and mixed solvents: Some recent developments

  • Omar A. El Seoud

Abstract

The effect of solvents on the spectra, absorption, or emission of substances is called solvatochromism; it is due to solute/solvent nonspecific and specific interactions, including dipole/dipole, dipole-induced/dipole, dispersion interactions, and hydrogen bonding. Thermo-solvatochromism refers to the effect of temperature on solvatochromism. The molecular structure of certain substances, polarity probes, make them particularly sensitive to these interactions; their solutions in different solvents have distinct and vivid colors. The study of both phenomena sheds light on the relative importance of the solvation mechanisms. This account focuses on recent developments in solvation in pure and binary solvent mixtures. The former has been quantitatively analyzed in terms of a multiparameter equation, modified to include the lipophilicity of the solvent. Solvation in binary solvent mixtures is complex because of the phenomenon of "preferential solvation" of the probe by one component of the mixture. A recently introduced solvent exchange model allows calculation of the composition of the probe solvation shell, relative to that of bulk medium. This model is based on the presence of the organic solvent (S), water (W), and a 1:1 hydrogen-bonded species (S-W). Solvation by the latter is more efficient than by its precursor solvents, due to probe/solvent hydrogen-bonding and hydrophobic interactions. Dimethylsulfoxide (DMSO) is an exception, because the strong DMSO/W interactions probably deactivate the latter species toward solvation. The relevance of the results obtained to kinetics of reactions is briefly discussed by addressing temperature-induced desolvation of the species involved (reactants and activated complexes) and the complex dependence of kinetic data (observed rate constants and activation parameters) in binary solvent mixtures on medium composition.


Conference

IUPAC International Conference on Physical Organic Chemistry (ICPOC-18), International Conference on Physical Organic Chemistry, ICPOC, Physical Organic Chemistry, 18th, Warsaw, Poland, 2006-08-20–2006-08-25


References

1. P. T. Anastas, J. C. Warner. Green Chemistry: Theory and Practice, p. 30, Oxford University Press, New York (1998).Search in Google Scholar

2. P. Tundo, P. T. Anastas, D. S. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff, W. Tumas. Pure Appl. Chem. 72, 1207 (2000).10.1351/pac200072071207Search in Google Scholar

3. P. T. Anastas, J. B. Zimmerman. Environ. Sci. Technol. 37, 95A (2003).10.1021/es032633uSearch in Google Scholar

4. doi:10.1021/ar010070q, W. Leinter. Acc. Chem. Res. 35, 746 (2002).Search in Google Scholar

5. doi:10.1021/cr980032t, T. Welton. Chem. Rev. 99, 2071 (1999).Search in Google Scholar

6. doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5, P. Wassescheid, W. Keim. Angew. Chem., Int. Ed. 39, 3772 (2000).Search in Google Scholar

7. doi:10.1021/cr010338r, J. Dupont, R. F. de Souza, P. A. Z. Suarez. Chem. Rev. 102, 3667 (2002).Search in Google Scholar

8. O. Pytela. Collect. Czech. Chem. Commun. 53, 1333 (1988).10.1135/cccc19881333Search in Google Scholar

9. P. Politzer, J. S. Murray. Quantitative Treatments of Solute-Solvents Interactions, p. 230, Elsevier, New York (1994).Search in Google Scholar

10. P. Suppan, N. Ghoneim. Solvatochromism, p. 21, The Royal Society of Chemistry: Cambridge (1997).Search in Google Scholar

11. J.-L. M. Abboud, R. Notario. Pure Appl. Chem. 71, 645 (1999).10.1351/pac199971040645Search in Google Scholar

12. doi:10.1021/cr010031s, G. Hefter, Y. Marcus, W. E. Waghorne. Chem. Rev. 102, 2773 (2002).Search in Google Scholar

13. C. Reichardt. Solvents and Solvent Effects in Organic Chemistry, 3rd ed., pp. 5, 329, 389, VCH, Weinheim (2003).Search in Google Scholar

14. C. Reichardt. Pure Appl. Chem. 76, 1903 (2004).10.1351/pac200476101903Search in Google Scholar

15. doi:10.1039/b500106b, C. Reichardt. Green Chem. 7, 339 (2005).Search in Google Scholar

16. doi:10.1021/cr020750m, A. R. Katritzky, D. C. Fara, H. Yang, K. Taemm, T. Tamm, M. Karelson. Chem. Rev. 104, 175 (2004).Search in Google Scholar

17. doi:10.1021/j100579a007, M. K. Chantooni Jr., I. M. Kolthoff. J. Phys. Chem. 79, 1176 (1975).Search in Google Scholar

18. doi:10.1016/0021-9797(76)90157-0, F. Nome, S. A. Chang, J. H. Fendler. J. Colloid Interface Sci. 56, 146 (1976).Search in Google Scholar

19. doi:10.1021/ja01065a003, M. T. Rogers, J. L. Burdett. J. Am. Chem. Soc. 86, 2105 (1964).Search in Google Scholar

20. doi:10.1021/ja01490a064, H. D. Zook, T. J. Russo. J. Am. Chem. Soc. 82, 1258 (1960).Search in Google Scholar

21. (a) doi:10.1021/ja01593a033, S. Winstein, A. H. Fainberg. J. Am. Chem. Soc. 78, 2770 (1956);Search in Google Scholar

21. (b) doi:10.1021/ja01579a027, S. Winstein, A. H. Fainberg. J. Am. Chem. Soc. 79, 5937 (1957).Search in Google Scholar

22. (a) doi:10.1039/jr9560002110, R. E. Swart, L. J. LeRoux. J. Chem. Soc. 2110 (1956);Search in Google Scholar

22. (b) doi:10.1039/jr9570000406, R. E. Swart, L. J. LeRoux. J. Chem. Soc. 406 (1957).Search in Google Scholar

23. doi:10.1039/a805374j, N. J. Buurma, A. M. Herranz, J. B. F. N. Engberts. J. Chem. Soc., Perkin Trans. 2 113 (1999).Search in Google Scholar

24. (a) doi:10.1021/ja00858a017, D. S. Kemp, K. G. Paul. J. Am. Chem. Soc. 97, 7305 (1975);Search in Google Scholar

24. (b) doi:10.1021/ja00072a009, J. W. Grate, R. A. Mcgill, D.Hilvert. J. Am. Chem. Soc. 115, 8577 (1993).Search in Google Scholar

25. J. B. F. N. Engberts. Pure Appl. Chem. 67, 823 (1995).10.1351/pac199567050823Search in Google Scholar

26. doi:10.1039/p29890000877, M. J. S. Dewar, D. M. Storch. J. Chem. Soc., Perkin Trans. 2 877 (1989).Search in Google Scholar

27. doi:10.1021/jo0012501, E. Humeres, R. J. Nunes, V. G. Machado, M. D. D. Gasques, C. Machado. J. Org. Chem. 66, 1163 (2001).Search in Google Scholar

28. O. S. Sorensen. Acta Chem. Scand. A 30, 673 (1976).10.3891/acta.chem.scand.30a-0673Search in Google Scholar

29. doi:10.1021/jo970070x, O. A. El Seoud, M. I. El Seoud, J. P. S. Farah. J. Org. Chem. 62, 5928 (1997).Search in Google Scholar

30. doi:10.1021/jo00445a001, J. W. Henederson, P. Haake. J. Org. Chem. 42, 3989 (1977).Search in Google Scholar

31. doi:10.1021/jo9518563, J. W. Wijnen, S. Zavarise, J. B. F. N. Engberts. J. Org. Chem. 61, 2001 (1996).Search in Google Scholar

32. doi:10.1002/poc.1081, O. A. El Seoud, F. Siviero. J. Phys. Org. Chem. 19, 793 (2006).Search in Google Scholar

33. doi:10.1039/p29760001735, M. H. Abraham, P. L. Grellier. J. Chem. Soc., Perkin Trans. 2 1735 (1976).Search in Google Scholar

34. (a) doi:10.1002/9780470171929.ch6, M. J. Kamlet, R. W. Taft. Prog. Phys. Org. Chem. 13, 485 (1981);Search in Google Scholar

34. (b) doi:10.1139/v88-420, M. H. Abraham, P. L. Grellier, J.-L. M Abboud, R. M. Doherty, R. W. Taft. Can. J. Chem. 66, 2673 (1988);Search in Google Scholar

34. (c) doi:10.1021/j100074a003, C.Laurence, P. Nicolet, M. T. Dalati, J.-L. M Abboud, R. Notario. J. Phys. Chem. 98, 5807 (1994).Search in Google Scholar

35. doi:10.1023/A:1008762321231, A. J. Leo, C. Hansch. Perspect. Drug Discov. Des. 17, 1 (1999).Search in Google Scholar

36. L. P. Novaki, O. A. El Seoud. Ber. Bunsen-Ges. Phys. Chem. 100, 648 (1996).10.1002/bbpc.19961000517Search in Google Scholar

37. (a) L. P. Novaki, O. A. El Seoud. Ber. Bunsen-Ges. Phys. Chem. 101, 105 (1997);10.1002/bbpc.19971010114Search in Google Scholar

37. (b) L. P. Novaki, O. A. El Seoud. Ber. Bunsen-Ges. Phys. Chem. 101, 902 (1997).10.1002/bbpc.19971010605Search in Google Scholar

38. doi:10.1002/1099-1395(200011)13:11<679::AID-POC299>3.0.CO;2-R, E. B. Tada, L. P. Novaki, O. A. El Seoud. J. Phys. Org. Chem. 13, 679 (2000).Search in Google Scholar

39. doi:10.1002/poc.510, M. S. Antonious, E. B. Tada, O. A. El Seoud. J. Phys. Org. Chem. 15, 403 (2002).Search in Google Scholar

40. doi:10.1002/poc.632, E. B. Tada, P. L. Silva, O. A. El Seoud. J. Phys. Org. Chem. 16, 691 (2003).Search in Google Scholar

41. doi:10.1039/b308550c, E. B. Tada, P. L. Silva, O. A. El Seoud. Phys. Chem. Chem. Phys. 5, 5378 (2003).Search in Google Scholar

42. (a) doi:10.1002/poc.887, E. B. Tada, P. L. Silva, C. Tavares, O. A. El Seoud. J. Phys. Org. Chem. 18, 398 (2005);Search in Google Scholar

42. (b) E. B. Tada. Ph.D. thesis, University of Sao Paulo (2004).Search in Google Scholar

43. doi:10.1002/poc.975, C. T. Martins, M. S. Lima, O. A. El Seoud. J. Phys. Org. Chem. 18, 1072 (2005).Search in Google Scholar

44. doi:10.1021/jp062250t, E. L. Bastos, P. L. Silva, O. A. El Seoud. J. Phys. Chem. A 110, 10287 (2006).Search in Google Scholar

45. doi:10.1021/jo061533e, C. T. Martins, M. S. Lima, O. A. El Seoud. J. Org. Chem. 71, 9068 (2006).Search in Google Scholar

46. T. Hill, P. Lewicki. Statistic Methods and Applications, A Comprehensive Reference for Science, Industry and Data Mining, 1st ed., p. 555, Statsoft, Tulsa (2006).Search in Google Scholar

47. doi:10.1039/a809244c, L. P. Novaki, O. A. El Seoud. Phys. Chem. Chem. Phys. 1, 1957 (1999).Search in Google Scholar

48. doi:10.1016/S0167-7322(97)00032-9, O. A. El Seoud. J. Mol. Liq. 72, 85 (1997).Search in Google Scholar

49. doi:10.1021/ja00297a016, W. Taft, M. H. Abraham, R. M. Doherty, M. J. Chalet. J. Am. Chem. Soc. 107, 3105 (1985).Search in Google Scholar

50. (a) doi:10.1021/jp983690q, I. Shulgin, E. Ruckenstein. J. Phys. Chem. B 103, 872 (1999);Search in Google Scholar

50. (b) doi:10.1021/jp983387p, I. Shulgin, E. Ruckenstein. J. Phys. Chem. B 103, 2496 (1999).Search in Google Scholar

51. (a) doi:10.1039/cs9932200409, Y. Marcus. Chem. Soc. Rev. 22, 409 (1993);Search in Google Scholar

51. (b) doi:10.1007/s007060170023, Y. Marcus. Monatsh. Chem. 132, 1387 (2001);Search in Google Scholar

51. (c) doi:10.1021/j100338a046, J.-L. Abboud, A. Douhal, M. J. Arin, M. T. Diez, H. Homan, G. Guiheneuf. J. Phys. Chem. 93, 214 (1989).Search in Google Scholar

52. (a) doi:10.1039/ft9928803541, E. Bosch, M. Roses. J. Chem. Soc., Faraday Trans. 88, 3541 (1992);Search in Google Scholar

52. (b) doi:10.1039/p29950001607, M. Roses, C. Rafols, J. Ortega, E. Bosch. J. Chem. Soc., Perkin Trans. 2 1607 (1995).Search in Google Scholar

53. (a) doi:10.1039/a605421h, C. Rafols, M. Roses, E. Bosch. J. Chem. Soc., Perkin Trans. 2 243 (1997);Search in Google Scholar

53. (b) doi:10.1002/(SICI)1099-1395(199803)11:3<185::AID-POC993>3.0.CO;2-5, U. Buhvestov, F. Rived, C. Rafols, E. Bosch, M. Roses. J. Phys. Org. Chem. 11, 185 (1998).Search in Google Scholar

54. (a) doi:10.1007/BF00645894, G. Roux, D. Roberts, G. Perron, J. E. Desnoyers. J. Solution Chem. 9, 629 (1980);Search in Google Scholar

54. (b) doi:10.1021/j100144a039, R. Zana, M. J. Eliebari. J. Phys. Chem. 97, 11134 (1993);Search in Google Scholar

54. (c) doi:10.1039/a802516i, A. Sacco, F. M. De Cillis, M. Holz. J. Chem. Soc., Faraday Trans. 94, 2089 (1998);Search in Google Scholar

54. (d) doi:10.1021/jp990659v, K. R. Harris, P. J. Newitt. J. Phys. Chem. A 103, 6508 (1999);Search in Google Scholar

54. (e) doi:10.1021/jp001393r, P. Petong, R. Pottel, U. Kaatze. J. Phys. Chem. A 104, 7420 (2000).Search in Google Scholar

55. (a) doi:10.1021/j100354a054, K. Nishikawa, H. Hayashi, T. Iijima. J. Phys. Chem. 93, 6559 (1989);Search in Google Scholar

55. (b) doi:10.1016/S0167-7322(99)00168-3, M. Huelsekopf, R.Ludwig. J. Mol. Liq. 85, 105 (2000).Search in Google Scholar

56. (a) doi:10.1039/ft9949000429, J.-S. Chen, J.-C. Shiao. J. Chem. Soc., Faraday Trans. 90, 429 (1994);Search in Google Scholar

56. (b) doi:10.1021/jp952596w, F. Eblinger, H.J.Schneider. J. Phys. Chem. 100, 5533 (1996);Search in Google Scholar

56. (c) doi:10.1139/v01-198, J. J. Max, S. Daneault, C. Chapados. Can. J. Chem. 80, 113 (2002).Search in Google Scholar

57. doi:10.1007/BF00649038, J. F. Coetzee, A. Hussam. J. Solution Chem. 11, 395 (1982).Search in Google Scholar

58. doi:10.1039/qr9662000075, G. B. Barlin, D. D. Perrin. Quart. Rev. 20, 75 (1966).Search in Google Scholar

59. doi:10.1021/jo00191a022, G. Gopalakrishnan, J. L. Hogg. J. Org. Chem. 49, 3161 (1984).Search in Google Scholar

60. doi:10.1021/jp0111517, D. N. Shin, J. W. Wijnen, J. B. F. N. Engberts, A. Wakisaka. J. Phys. Chem. B 105, 6759 (2001).Search in Google Scholar

61. doi:10.1063/1.478544, I. A. Borin, M. S. Skaf. J. Chem. Phys. 110, 6412 (1999).Search in Google Scholar

62. doi:10.1021/jp001079x, K. Mizuno, S. Imafuji, T. Ochi, T. Ohta, S. Maeda. J. Phys. Chem. B 104, 11001 (2000).Search in Google Scholar

63. doi:10.1016/S0921-4526(99)00214-8, S. N. Shashkov, M. A. Kiselev, S. N. Tioutiounnikov, A. M. Kiselev, P. Lesieur. Physica B 271, 184 (1999).Search in Google Scholar

64. doi:10.1063/1.1315333, J. T. Cabral, A. Luzar, J. Teixeira, M. C. Bellissent-Funel. J. Chem. Phys. 113, 8736 (2000).Search in Google Scholar

65. (a) doi:10.1039/f29736900978, B. Kingston, M. C. R. Symons. J. Chem. Soc., Faraday Trans. 2 69, 978 (1973);Search in Google Scholar

65. (b) M. C. R. Symons. Pure Appl. Chem. 58, 1121 (1986).10.1351/pac198658081121Search in Google Scholar

66. J. R. Haak, J. B. F. N. Engberts. Recl. Trav. Chim. 105, 307 (1986).10.1002/recl.19861050913Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779061135/html
Scroll to top button