Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Phase diagrams and thermodynamics of rare-earth-doped zirconia ceramics

  • Chong Wang , Matvei Zinkevich and Fritz Aldinger

Abstract

Results of the comprehensive experimental and computational phase studies of the systems ZrO2-REO1.5 (RE = La, Nd, Sm, Gd, Dy, Yb) are summarized. Various experimental techniques, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), differential thermal analysis (DTA), and high-temperature calorimetry are employed to study the phase transformation, phase equilibria between 1400 and 1700 °C, heat content and heat capacity of the materials. A lot of contradictions in the literature are resolved, and the phase diagrams are reconstructed. Based on the experimental data obtained in this work and literature, the systems ZrO2-REO1.5 are thermodynamically optimized using the CALPHAD (CALculation of PHase Diagram) approach. Most of the experimental data are well reproduced. Based on the present experiments and calculations, some clear characteristic evolutions with the change of the ionic radius of doping element RE+3 can be concluded.


Conference

International IUPAC Conference on High Temperature Materials Chemistry (HTMC-XII), High Temperature Materials Chemistry, HTMC, High Temperature Materials Chemistry, 12th, Vienna, Austria, 2006-09-18–2006-09-22


References

1. doi:10.1016/j.cossms.2004.03.009, C. G. Levi. Curr. Opin. Solid State Mater. Sci. 8, 77 (2004).Search in Google Scholar

2. doi:10.1016/S0257-8972(01)01651-6, J. R. Nicholls, K. J. Lawson, A. Johnstone, D. S. Rickerby. Surf. Coat. Technol. 151-152, 383 (2002).Search in Google Scholar

3. D. Zhu, Y. L. Chen, R. A. Miller. Ceram. Eng. Sci. Proc. 24, 525 (2003).Search in Google Scholar

4. R. Vassen, X. Q. Cao, F. Tietz, D. Basu, D. Stover. J. Am. Ceram. Soc. 83, 2023 (2000).10.1111/j.1151-2916.2000.tb01506.xSearch in Google Scholar

5. J. Wu, X. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, M. I. Osendi. J. Am. Ceram. Soc. 85, 3031 (2002).10.1111/j.1151-2916.2002.tb00574.xSearch in Google Scholar

6. M. J. Maloney. U.S. Patent 6177200(2001).Search in Google Scholar

7. doi:10.1016/j.actamat.2005.03.035, R. M. Leckie, S. Kraemer, M. Ruhle, C. G. Levi. Acta Mater. 53, 3281 (2005).Search in Google Scholar

8. Chong Wang. PhD. Thesis, University of Stuttgart (2006).Search in Google Scholar

9. doi:10.1002/pssa.2210210102, E. C. Subbarao, H. S. Maiti, K. K. Srivastava. Phys. Status Solidi A 21, 9 (1974).Search in Google Scholar

10. doi:10.1007/BF00362139, E. R. Andrievsakaya, L. M. Lopato. J. Mater. Sci. 30, 2591 (1995).Search in Google Scholar

11. doi:10.1111/j.1151-2916.1995.tb08642.x, M. Yashima, T. Mitsuhashi, H. Takashina, M. Kakihana, T. Ikegami, M. Yoshimura. J. Am. Ceram. Soc. 78, 2225 (1995).Search in Google Scholar

12. doi:10.1111/j.1151-2916.1992.tb05546.x, T. S. Sheu, T. Y. Tien, I. W. Chen. J. Am. Ceram. Soc. 75, 1108 (1992).Search in Google Scholar

13. doi:10.1016/0167-2738(96)00386-4, M. Yashima, M. Kakihana, M. Yoshimura. Solid State Ionics 86-88, 1131 (1996).Search in Google Scholar

14. doi:10.1016/j.surfcoat.2005.07.089, V. Lughi, D. R. Clarke. Surf. Coat. Technol. 200, 1287 (2005).Search in Google Scholar

15. O. Fabrichnaya, F. Aldinger. Z. Metallkd. 95, 27 (2004).10.3139/146.017909Search in Google Scholar

16. doi:10.1016/j.jeurceramsoc.2004.11.011, S. Lakiza, O. Fabrichnaya, Ch. Wang, M. Zinkevich, F. Aldinger. J. Eur. Ceram. Soc. 26, 233 (2006).Search in Google Scholar

17. doi:10.1016/S0925-8388(00)01481-X, M. Hillert. J. Alloy. Compd. 320, 161 (2001).Search in Google Scholar

18. doi:10.1021/ie50458a036, O. Redlich, A. T. Kister. Ind. Eng. Chem. 40, 345 (1948).Search in Google Scholar

19. doi:10.1016/j.pmatsci.2006.09.002, M. Zinkevich. Prog. Mater. Sci. 52, 597 (2007).Search in Google Scholar

20. L. Minervini, R. W. Grimes, K. E. Sickafus. J. Am. Ceram. Soc. 83, 1873 (2000).10.1111/j.1151-2916.2000.tb01484.xSearch in Google Scholar

21. C. R. Stanek, L. Minervini, R. W. Grimes. J. Am. Ceram. Soc. 85, 2792 (2002).10.1111/j.1151-2916.2002.tb00530.xSearch in Google Scholar

22. V. P. Red'ko, L. M. Lopato. Inorg. Mater. 27, 1609 (1991).Search in Google Scholar

23. doi:10.1016/0022-4596(76)90156-0, H. J. Rossell. J. Solid State Chem. 19, 103 (1976).Search in Google Scholar

24. A. Rouanet. C. R. Acad. Sci. Paris Series C 267, 395 (1968).Search in Google Scholar

25. A. Rouanet. Rev. Int. Hautes Temp. Refract. 8, 161 (1971).Search in Google Scholar

26. doi:10.1016/j.jeurceramsoc.2005.01.014, S. M. Lakiza, L. M. Lopato. J. Eur. Ceram. Soc. 25, 1373 (2005).Search in Google Scholar

27. H. M. Ondik (Ed.). In Phase Diagrams for Zirconium and Zirconia Systems, National Institute of Standards and Technology, Gaithersburg, MD (1998).Search in Google Scholar

28. doi:10.1111/j.1151-2916.1988.tb05893.x, B. Bastide, P. Odier, J. P. Coutures. J. Am. Ceram. Soc. 71, 449 (1988).Search in Google Scholar

29. M. Yashima, N. Ishizawa, T. Noma, M. Yoshimura. J. Ceram. Soc. Japan 101, 871 (1993).10.2109/jcersj.101.871Search in Google Scholar

30. doi:10.1007/BF02645287, J. Katamura, T. Seri, T. Sakuma. J. Phase Equilib. 16, 315 (1995).Search in Google Scholar

31. doi:10.1006/jssc.1999.8433, Y. Tabira, R. L. Withers. J. Solid State Chem. 148, 205 (1999).Search in Google Scholar

32. doi:10.1007/BF00553219, H. G. Scott. J. Mater. Sci. 13, 1592 (1978).Search in Google Scholar

33. doi:10.1006/jssc.2001.9201, A. J. Feighery, J. T. S. Irvine, C. Zheng. J. Solid State Chem. 160, 302 (2001).Search in Google Scholar

34. doi:10.1111/j.1151-2916.1991.tb06844.x, D. K. Leung, C. J. Chan, M. Ruhle, F. Lange. J. Am. Ceram. Soc. 74, 2786 (1991).Search in Google Scholar

35. M. Perez Y Jorba. Ann. Chim. 7, 479 (1962).Search in Google Scholar

36. A. G. Karaulov, E. I. Zoz. Refract. Ind. Ceram. 40, 479 (1999).10.1007/BF02762367Search in Google Scholar

37. doi:10.1007/BF00550588, C. Pascual, P. Duran. J. Mater. Sci. 15, 1701 (1980).Search in Google Scholar

38. A. M. Gavrish, L. S. Alekseenko, L. A. Tarasova, G. P. Orekhova. Inorg. Mater. 17, 1541 (1981).Search in Google Scholar

39. V. S. Stubican, G. S. Corman, J. R. Hellmann, G. Senft. In Advances in Ceramics, Science and Technology of Zirconia II, Vol. 12, N. Claussen, M. Ruhle, A. H. Heuer (Eds.), pp. 96-106, The American Ceramic Society, Columbus, OH (1984).Search in Google Scholar

40. doi:10.1007/BF01159821, M. Gonzalez, C. Moure, J. R. Jurado, P. Duran. J. Mater. Sci. 28, 3451 (1993).Search in Google Scholar

41. Yu. K. Voron'ko, A. A. Sobol', L. I. Tsymbal. Inorg. Mater. 34, 350 (1998).Search in Google Scholar

42. doi:10.1016/0022-4596(70)90102-7, M. Spiridonov, L. N. Popova, R. Ya. Popil'skii. J. Solid State Chem. 2, 430 (1970).Search in Google Scholar

43. doi:10.1016/0022-4596(70)90140-4, M. R. Thornber, D. J. M. Bevan, E. Summerville. J. Solid State Chem. 1, 545 (1970).Search in Google Scholar

44. doi:10.1016/0079-6786(83)90001-8, M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Prog. Solid State Chem. 15, 55 (1983).Search in Google Scholar

45. V. R. Korneev, V. B. Glushkova, E. K. Keler. Inorg. Mater. 7, 781 (1971).Search in Google Scholar

46. K. Helean, B. D. Begg, A. Navrotsky, B. Ebbinghaus, W. J. Weber, R. C. Ewing. Mater. Res. Soc. Symp. Proc. 663, 691 (2001).10.1557/PROC-663-691Search in Google Scholar

47. T. A. Lee, A. Navrotsky, I. Molodetsky. J. Mater. Res. 18, 908 (2003).10.1557/JMR.2003.0125Search in Google Scholar

48. doi:10.1039/b417143h, A. Navrotsky. J. Mater. Chem. 15, 1883 (2005).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779101731/html
Scroll to top button