Skip to main content
Log in

Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ⩾ (2k + I)2 - 1 for the perturbed Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smale, S., Mathematical problems for the next century, The Mathematical Intelligencer, 1998, 20(2): 7–15.

    MATH  MathSciNet  Google Scholar 

  2. Farkas, M., Periodic Motion, New York: Springer-Verlag, 1994.

    Google Scholar 

  3. Hilbert, D., Mathematical problems, in Proceedings of Symposia in Pure Mathematics (ed. Browder, F.), Providence: AMS, 1976, 28: 21–34.

    Google Scholar 

  4. Ye, Y. Q., Theory of Limit Cycles, Transi. Math. Monographs 66, Providence, RI: Amer. Math. Soc, 1986.

    Google Scholar 

  5. Zhang, Z. F., Ding, T. R., Huang, W. Z. et al., Qualitative Theory of Differential Equations, Transi. Math. Monographs 101, Providence, RI: Amer. Math. Soc, 1992.

    Google Scholar 

  6. Gudkov, D. A., The topology of real projective algebraic varieties, Russian Math. Surveys, 1974, 29(4): 1–79.

    Article  MATH  MathSciNet  Google Scholar 

  7. Viro, O. Y., Progress in topology of real algebraic varieties over the last six years, Usp. Mat. Nauk., 1986, 41(3): 45–67.

    MathSciNet  Google Scholar 

  8. Wilson, G., Hilbert’s sixteenth problem, Topology, 1978, 17: 53–73.

    Article  MATH  MathSciNet  Google Scholar 

  9. Ilyashenko, Y., Finiteness Theorem for Limit Cycles, Providence, RI: American Mathematical Society, 1991.

    Google Scholar 

  10. Chan, H. S. Y., Chung, K. W., Qi, D. W., Some bifurcation diagrams for limit cycles of quadratic differential systems, Int. J. Bifurcation and Chaos, 2001, 11(1): 197–206.

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, J. B., Huang, Q. M., Bifurcations of limit cycles forming compound eyes in the cubic system, Chinese Ann. of Math., 1987, 8B: 391–403.

    Google Scholar 

  12. Li, J. B., Liu, Z. R., Bifurcation set and compound eyes in a perturbed cubic Hamiltonian system, in Ordinary and Delay Differential Equations, π Pitman Research Notes in Math. Series 272, England: Longman, 1992, 116–128.

    Google Scholar 

  13. Lloyd, N. G., Limit cycles of polynomial systems, in New Directions in Dynamical Systems (eds. Bedford, T., Swift, J.), 40, London Mathematical Society Lecture Notes, 1988, 192-234.

  14. Luo, D. J., Wang, X., Zhu, D. M. et al., Bifurcation Theory and Methods of Dynamical Systems, Singapore: World Scientific, 1997.

    MATH  Google Scholar 

  15. Perko, L. M., Differential Equations and Dynamical Systems, New York: Springer-Verlag, 1991.

    MATH  Google Scholar 

  16. Ye, Y. Q., Qualitative Theory of Polynomial Differential Systems, Modern Mathematics Series (in Chinese), Shanghai: Shanghai Scientific and Technical Publishers, 1995.

    Google Scholar 

  17. Otrokov, N. T., On the number of limit cycles of a differential equation in a neighbourhood of a singular point (in Russian), Mat. Sb., 1954, 34: 127–144.

    MATH  MathSciNet  Google Scholar 

  18. Christopher, C. J., Lloyd, N. G., Polynomial systems: lower bound for the Hilbert numbers, Proc. Royal Soc. London Ser. A, 1995, 450: 219–224.

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, J. B., Chan, H. S. Y., Chung, K. W., Some lower bounds for H(n) in Hilbert’s 16th problem, Qualitative Theory of Dynamical Systems, to appear.

  20. Li, J. B., Zhao, X. H., Rotation symmetry groups of planar Hamiltonian systems, Ann. of Diff. Eqs., 1989, 5: 25–33.

    MATH  MathSciNet  Google Scholar 

  21. Li, J. B., Liu, Z. R., Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system, Publications Mathmatiques, 1991, 35: 487–506.

    MATH  Google Scholar 

  22. Arnold, V. I., Geometric Methods in Theory of Ordinary Differential Equations, New York: Springer-Verlag, 1983.

    Google Scholar 

  23. Li, J. B., Li, C. F., Planar cubic Hamiltonian systems and distribution of limit cycles of (E3), Acta. Math. Sinica, 1985, 28(4): 509–521.

    MATH  MathSciNet  Google Scholar 

  24. Carr, J., Chow, S. N., Hale, J. K., Abelian integrals and bifurcation theory, Journal of Differential Equations, 1985, 59: 413–417.

    Article  MATH  MathSciNet  Google Scholar 

  25. Guckenheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer-Verlag, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chan, H.S.Y. & Chung, K.W. Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5. Sci. China Ser. A-Math. 45, 817–826 (2002). https://doi.org/10.1360/02ys9090

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ys9090

Keywords

Navigation