Skip to main content
Log in

Experimental determination of intermetallic phases, phase equilibria, and invariant reaction temperatures in the Fe-Zr system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

The phase diagram of the binary Fe-Zr system was redetermined by differential thermal analysis (DTA), electron-probe microanalysis (EPMA), x-ray diffraction (XRD), and metallography in the whole range of compositions. The stable intermetallic phases of the binary system are the cubic and the hexagonal polymorphs of the Fe2Zr Laves phase and the Zr-rich phases FeZr2 and FeZr3. While the cubic polymorph of the Laves phase is the stable structure at the stoichiometric Fe2Zr composition, the hexagonal C36-type polymorph of the Laves phase is a high-temperature phase that is found at Zr concentrations as low as 26.6 at.%. The Zr-rich phases FeZr2 and FeZr3 have small homogeneity ranges of about 0.5 at.%. FeZr2 is a high-temperature phase, stable between 780 and 951 °C. FeZr3 decomposes peritectoidally at 851 °C. The frequently reported phase Fe23Zr6 (Fe3Zr) is found not to be an equilibrium phase of the binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Wallbaum: “Die Systeme der Eisenmetalle mit Titan, Zirkon, Niob und Tantal,” Arch. Eisenhuettenwes., 1941, 14, pp. 521–26.

    Google Scholar 

  2. H.J. Wallbaum: “Ergebnisse der röntgenographischen Strukturuntersuchung von Legierungen der Zusammensetzung AB2 der Eisenmetalle mit Titan, Zirkon, Niob und Tantal (1),” Z. Kristallogr., 1941, 103, pp. 391–402.

    Google Scholar 

  3. E.T. Hayes, A.H. Robertson, and W.L. O’Brien: “Constitution and Mechanical Properties of Zirconium-Iron Alloys,” Trans. ASM, 1951, 43, pp. 888–97.

    Google Scholar 

  4. L.E. Tanner and D.W. Levinson: “Observations on the System Zirconium-Iron,” Trans. Metall. Soc. AIME, 1959, 215, pp. 1066–67.

    Google Scholar 

  5. M.V. Nevitt, J.W. Downey, and R.A. Morris: “Titanium, Zirconium or Hafnium,” Trans. Metall. Soc. AIME, 1960, 218, pp. 1019–23.

    Google Scholar 

  6. R.S. Craig: TID 14769, US-AEC, 1962, p. 72.

  7. V.N. Svechnikov and A.Ts. Spektor: “The Iron-Zirconium Phase Diagram,” Proc. Acad. Sci. USSR, Chem. Sect., 1962, 142, pp. 231–33. (in English; TR: Dokl. Akad. Nauk SSSR, 1962, 143, pp. 613–15).

    Google Scholar 

  8. V.N. Svechnikov, V.M. Pan, and A.Ts. Spektor: “Intermediate Phases in the Iron-Zirconium System,” Russ. J. Inorg. Chem., 1963, 8, pp. 1106–09 (in English; TR: Zh. Neorg. Khim., 1963, 8, p. 2118).

    Google Scholar 

  9. P.I. Kripyakevich, V.S. Protasov, and E.E. Cherkashin: “Crystal Structure of the Compound ZrFe3,” Russ. J. Inorg. Chem., 1965, 10, pp. 151–52.

    Google Scholar 

  10. Yu.B. Kuz’ma, V.Ya. Markiv, Yu.V. Voroshilov, and R.V. Skolozdra: “X-Ray Structural Investigation of Some Alloys of the Zr-Fe and Zr-Co Systems,” Inorg. Mater., 1966, 2, pp. 222–25.

    Google Scholar 

  11. W. Brückner, K. Kleinstück, and G.E.R. Schulze: “Atomic Arrangement in the Homogeneity Range of the Laves Phases ZrFe2 and TiFe2,” Phys. Status Solidi, 1967, 23, pp. 475–80.

    Article  Google Scholar 

  12. W. Brückner, R. Perthel, K. Kleinstück, and G.E.R. Schulze: “Magnetic Properties of ZrFe2 and TiFe2 Within Their Homogeneity Range,” Phys. Status Solidi, 1968, 29, pp. 211–16.

    Article  Google Scholar 

  13. K. Kai, T. Nakamichi, and M. Yamamoto: “Crystal Structures and Magnetic Properties of the Intermetallic Compound Fe2Zr,” J. Phys. Soc. Jpn., 1968, 25, p. 1192.

    Article  ADS  Google Scholar 

  14. W. Brückner: “Die Anpassung des Gitters der Laves-Phasen ZrFe2 und TiFe2 an Abweichungen vom stöchiometrischen Verhältnis und deren Auswirkung auf die magnetischen Eigenschaften dieser Verbindungen,” Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 1969.

    Google Scholar 

  15. W.A. Fischer, K. Lorenz, H. Fabritius, and D. Schlegel: “Untersuchung der α/γ-Umwandlung in hochreinen Zweistofflegierungen des Eisens mit Molybdän, Vanadin, Wolfram, Niob, Tantal, Zirkon und Kobalt,” Arch. Eisenhuettenwes., 1970, 41, pp. 489–98.

    Google Scholar 

  16. C.W. Allen, P. Delavignette, and S. Amelinckx: “Electron Microscopic Study of the Laves Phases TiCr2 and TiCo2,” Phys. Status Solidi (a), 1972, 9, pp. 237–46.

    Article  Google Scholar 

  17. E.E. Havinga, H. Damsma, and P. Hokkeling: “Compounds and Pseudo-Binary Alloys With the CuAl2 (C16)-Type Structure. I. Preparation and X-Ray Results,” J. Less-Common Met., 1972, 27, pp. 169–86.

    Article  Google Scholar 

  18. H. Boller: “Über den aufgefüllten Re3B-Typ in den Systemen (Zr,Hf)-(Fe,Co,Ni)-O,” Monatsh. Chem., 1973, 104, pp. 545–49.

    Article  Google Scholar 

  19. L.N. Guseva and T.O. Malakhova: “X-Ray Investigations of Alloys of Iron with Zirconium, Iron-Rich (Fe-ZrFe2),” Metallofiz. (Kiev), 1973, 46, pp. 111–13.

    Google Scholar 

  20. R.M. van Essen and K.H.J. Buschow: “Hydrogen Absorption in Various Zirconium- and Hafnium-Based Intermetallic Compounds,” J. Less-Common Met., 1979, 64, pp. 277–84.

    Article  Google Scholar 

  21. K.H.J. Buschow: “Thermal Stability and Magnetic Properties of Amorphous Zr1−xFex Alloys,” J. Less-Common Met., 1981, 79, pp. 243–53.

    Article  Google Scholar 

  22. P.G. Lucuta, I. Patru, and F. Vasiliu: “Microstructural Features of Hot Pressure Bonding Between Stainless Steel Type AISI-304 L and Zircaloy-2,” J. Nucl. Mater., 1981, 99, pp. 154–64.

    Article  ADS  Google Scholar 

  23. T.O. Malakhova and Z.M. Alekseeva: “The Zr-Fe Phase Diagram in the Range 20–40 at.% Fe and the Crystalline Structure of the Intermetallic Compound Zr3Fe,” J. Less-Common Met., 1981, 81, pp. 293–300.

    Article  Google Scholar 

  24. J.M. Grange and D. Charquet: “Nature des Précipités dans le Zirconium de Qualité Nucléaire Obtenu par le Procédé Kroll,” J. Nucl. Mater., 1982, 110, pp. 349–51.

    Article  ADS  Google Scholar 

  25. O. Kubaschewski: Iron—Binary Phase Diagrams, Springer-Verlag, Berlin, Germany, 1982, pp. 175–78.

    Google Scholar 

  26. T.O. Malakhova and A.N. Kobylkin: “The Zr-Fe Phase Diagram (0–66.6 at.% Fe),” Russ. Metall., 1982, 1982(2), pp. 187–91.

    Google Scholar 

  27. M. Sostarich and Y. Khan: “Stability and Crystallization Behaviour of Amorphous Fe90Zr10 Alloy,” Z. Metallkd., 1982, 73, pp. 706–09.

    Google Scholar 

  28. F. Aubertin, U. Gonser, and S.J. Campbell: “Hydrogen in Zr-Fe Alloys: A Mössbauer Effect Study,” J. Less-Common Met., 1984, 101, pp. 437–40.

    Article  Google Scholar 

  29. C. Boffito, F. Doni, and L. Rosai: “The Properties of Some Zirconium-Based Gettering Alloys for Hydrogen Isotope Storage and Purification,” J. Less-Common Met., 1984, 104, pp. 149–57.

    Article  Google Scholar 

  30. P. Chaudouet, B. Lambert, R. Madar, and R. Fruchart: “Existence d’une Phase G dans le Ternaire Fe-Zr-Si,” Ann. Chim. Fr., 1984, 9, pp. 119–21.

    Google Scholar 

  31. J.L. Pouchou and F. Pichoir: “A New Model for X-Ray Microanalysis. I. Application to the Analysis of Homogeneous Samples,” La Recherche Aerospatiale, 1984, 3, pp. 13–38.

    Google Scholar 

  32. F. Aubertin, U. Gonser, S.J. Campbell, and H.-G. Wagner: “An Appraisal of the Phases of the Zirconium-Iron System,” Z. Metallkd., 1985, 76, pp. 237–44.

    Google Scholar 

  33. M. Matsuura: “Surface-Induced Crystallisation of Melt-Spun Amorphous Fe-Rich Fe-Zr Alloys,” J. Phys. F, 1985, 15, pp. 257–62.

    Article  ADS  Google Scholar 

  34. D.G. Ivey and D.O. Northwood: “Storing Hydrogen in AB2 Laves-Type Compounds,” Z. Phys. Chem. N.F., 1986, 147, pp. 191–209.

    Google Scholar 

  35. A.M. van der Kraan and K.H.J. Buschow: “The 57Fe Mössbauer Isomer Shift in Intermetallic Compounds of Iron,” Physica B, 1986, 138, pp. 55–62.

    Google Scholar 

  36. M. Venkatraman and J.P. Neumann: “The Cr-Nb (Chromium-Niobium) System,” Bull. Alloy Phase Diagrams, 1986, 7, pp. 462–66.

    Article  Google Scholar 

  37. D. Arias and J.P. Abriata: “The Fe-Zr System,” Bull. Alloy Phase Diagrams, 1988, 9, pp. 597–604.

    Article  Google Scholar 

  38. Z.M. Alekseeva and N.V. Korotkova: “The Zr-Fe Phase Diagram,” Russ. Metall., 1989, 1989(4), pp. 197–203.

    Google Scholar 

  39. J.L. Murray: “Cr-Ti (Chromium-Titanium)” in Binary Alloy Phase Diagrams, Vol. 1, 2nd ed., T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, ed., ASM, Materials Park, OH, 1990, pp. 1345–48.

    Google Scholar 

  40. M. Venkatraman and J.P. Neumann: “Cr-Hf (Chromium-Hafnium)” in Binary Alloy Phase Diagrams, Vol. 1, 2nd ed., T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, ed., ASM, Materials Park, OH, 1990, pp. 1280–81.

    Google Scholar 

  41. K. Bhanumurthy, G.B. Kale, and S.K. Khera: “Reaction Diffusion in the Zirconium Iron System,” J. Nucl. Mater., 1991, 185, pp. 208–13.

    Article  ADS  Google Scholar 

  42. Y.T. Zhu and J.H. Devletian: “Precise Determination of Isomorphous and Eutectoid Transformation Temperatures in Binary and Ternary Zr Alloys,” J. Mater. Sci., 1991, 26, pp. 6218–22.

    Article  ADS  Google Scholar 

  43. Y.P. Liu, J.D. Livingston, and S.M. Allen: “Room-Temperature Deformation and Stress-Induced Phase Transformation of Laves Phases in Fe-10 at% Zr Alloy,” Metall. Trans. A, 1992, 23, pp. 3303–08.

    Google Scholar 

  44. D. Arias, M.S. Granovsky, and J.P. Abriata: “Fe-Zr” in Phase Diagrams of Binary Iron Alloys, H. Okamoto, ed., ASM Int., Materials Park, OH, 1993, pp. 467–72.

    Google Scholar 

  45. K. Bhanumurthy and G.B. Kale: “Modification of Zirconium-Iron Phase Diagram,” Scr. Metall. Mater, 1993, 28, pp. 753–56.

    Article  Google Scholar 

  46. Y.P. Liu, S.M. Allen, and J.D. Livingston: “Deformation Mechanisms in a Laves Phase,” Mater. Res. Soc. Symp. Proc., 1993, 288, pp. 203–08.

    Google Scholar 

  47. R. Lück and H. Wang: “Heat Capacity of the Fe2Zr Intermetallic Compound,” J. Alloys Compd., 1993, 191, pp. L11-L12.

    Article  Google Scholar 

  48. H. Okamoto: “Fe-Zr (Iron-Zirconium),” J. Phase Equilibria, 1993, 14, pp. 652–53.

    Article  Google Scholar 

  49. E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii: TYPIX—Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Vol. 1, Gmelin Handbook of Inorganic Chemistry, Springer-Verlag, Berlin, Germany, 1993, p. 176.

    Google Scholar 

  50. A.D. Pelton, L. Leibowitz, and R.A. Blomquist: “Thermodynamic Analysis of Phase Equilibria in the Iron-Zirconium System,” J. Nucl. Mater., 1993, 201, pp. 218–24.

    Article  ADS  Google Scholar 

  51. B.P. Bewlay, J.A. Sutliff, M.R. Jackson, and H.A. Lipsitt: “Microstructural and Crystallographic Relationships in Directionally Solidified Nb-Cr2Nb and Cr-Cr2Nb Eutectics,” Acta Metall. Mater., 1994, 8, pp. 2869–78.

    Google Scholar 

  52. K.S. Kumar and D.B. Miracle: “Microstructural Evolution and Mechanical Properties of a Cr-Cr2Hf Alloy,” Intermetallics, 1994, 2, pp. 257–74.

    Article  Google Scholar 

  53. A. Nobile, W.C. Mosley, J.S. Holder, and K.N. Brooks: “Deuterium Absorption and Material Phase Characteristics of Zr2Fe,” J. Alloys Compd., 1994, 206, pp. 83–93.

    Article  Google Scholar 

  54. H. Zou, G.M. Hood, J.A. Roy, R.J. Schultz, and J.A. Jackman: “The Solid Solubility of Fe in α-Zr—A Secondary-Ion Mass-Spectrometry Study,” J. Nucl. Mater., 1994, 210, pp. 239–43.

    Article  ADS  Google Scholar 

  55. K.C. Chen, S.M. Allen, and J.D. Livingston: “Stoichiometry and Alloying Effects on the Phase Stability and Mechanical Properties of TiCr2-Base Laves Phase Alloys,” Mater. Res. Soc. Symp. Proc., 1995, 364, pp. 1401–06.

    Google Scholar 

  56. A.G. Heics and W.T. Shmayda: “Design of a 2nd Generation Secondary Enclosure Cleanup System,” Fusion Technol., 1995, 28, pp. 1509–14.

    Google Scholar 

  57. Y.P. Liu, S.M. Allen, and J.D. Livingston: “Deformation of Two C36 Laves Phases by Microhardness Indentation at Room Temperature,” Metall. Mater. Trans. A, 1995, 26, pp. 1107–12.

    Article  Google Scholar 

  58. Y.P. Liu, S.M. Allen, and J.D. Livingston: “An Investigation of Fe3Zr Phase,” Scr. Metall. Mater, 1995, 32, pp. 1129–32.

    Article  Google Scholar 

  59. M.V. Nevitt and C.C. Koch: “Some Important Structures of Fixed Stoichiometry” in Intermetallic Compounds: Principles and Practice, Vol. 1, J.H. Westbrook, R.L. Fleischer, ed., Wiley, Chichester, UK, 1995, pp. 396–97.

    Google Scholar 

  60. G. Sauthoff: Intermetallics, VCH, Weinheim, Germany, 1995.

    Book  Google Scholar 

  61. C. Servant, C. Gueneau, and I. Ansara: “Experimental and Thermodynamic Assessment of the Fe-Zr System,” J. Alloys Compd., 1995, 220, pp. 19–26.

    Article  Google Scholar 

  62. I.Yu. Zavaliy, M.V. Lototsky, A.B. Riabov, and V.A. Yartys: “Oxide-Modified Zr-Fe Alloys: Thermodynamic Calculations, X-Ray Analysis and Hydrogen Absorption Properties,” J. Alloys Compd., 1995, 219, pp. 38–40.

    Article  Google Scholar 

  63. D.P. Abraham, S.M. McDeavitt, and J. Park: “Microstructure and Phase Identification in Type-304 Stainless Steel-Zirconium Alloys,” Metall. Mater. Trans. A, 1996, 27, pp. 2151–59.

    Article  Google Scholar 

  64. M.S. Granovsky and D. Arias: “Intermetallic Phases in the Iron-Rich Region of the Zr-Fe Phase Diagram,” J. Nucl. Mater., 1996,. 229, pp. 29–35.

    Article  ADS  Google Scholar 

  65. D.D. Keiser Jr. and M.C. Petri: “Interdiffusion Behavior in U-Pu-Zr Fuel Versus Stainless Steel Couples,” J. Nucl. Mater., 1996, 240, pp. 51–61.

    Article  ADS  Google Scholar 

  66. L.F. Kiss, G. Huhn, T. Kemény, J. Balogh, and D. Kaptás: “Magnetic Properties of Fe-Zr Metastable Phases,” J. Magn. Magn. Mater., 1996, 160, pp. 229–32.

    Article  ADS  Google Scholar 

  67. L. Machon and G. Sauthoff: “Deformation Behavior of Al-Containing C-14 Laves Phase Alloys,” Intermetallics, 1996, 4, pp. 469–81.

    Article  Google Scholar 

  68. K. Mahdouk and J.-C. Gachon: “Investigation of the Iron-Rich Corner of the Fe-Hf-Zr System,” J. Phase Equilibria, 1996, 17, pp. 218–27.

    Article  Google Scholar 

  69. D.P. Abraham, J.W. Richardson Jr, and S.M. McDeavitt: “Formation of the Fe23Zr6 Phase in an Fe-Zr Alloy,” Scr. Mater., 1997, 37, pp. 239–44.

    Article  Google Scholar 

  70. D.P. Abraham, J.W. Richardson Jr, and S.M. McDeavitt: “Laves Intermetallics in Stainless Steel-Zirconium Alloys,” Mater. Sci. Eng. A, 1997, 239–240, pp. 658–64.

    Google Scholar 

  71. S. Fukada, K. Tokunaga, and M. Nishikawa: “Recovery of Low-Concentration Hydrogen From Different Gas Streams with Zr2Fe Particle Beds,” Fusion Eng. Design, 1997, 36, pp. 471–78.

    Article  Google Scholar 

  72. S.M. McDeavitt, D.P. Abraham, J.Y. Park, and D.D. Keiser Jr.: “Stainless Steel-Zirconium Waste Forms From the Treatment of Spent Nuclear Fuel,” JOM, 1997, 49, pp. 29–32.

    Article  Google Scholar 

  73. H. Okamoto: “Fe-Zr (Iron-Zirconium),” J. Phase Equilibria, 1997, 18, pp. 316.

    Article  Google Scholar 

  74. K.C. Hari Kumar, I. Ansara, P. Wollants, and L. Delaey: “Thermodynamic Optimisation of the Co-Nb System,” J. Alloys Compd., 1998, 267, pp. 105–12.

    Article  Google Scholar 

  75. S.M. McDeavitt, D.P. Abraham, and J.Y. Park: “Evaluation of Stainless Steel-Zirconium Alloys as High-Level Nuclear Waste Forms,” J. Nucl. Mater., 1998, 257, pp. 21–34.

    Article  ADS  Google Scholar 

  76. V.A. Yartys, H. Fjellvåg, B.C. Hauback, and A.B. Riabov: “Neutron Diffraction Studies of Zr-Containing Intermetallic Hydrides With Ordered Hydrogen Sublattice. I. Crystal Structure of Zr2FeD5,” J. Alloys Compd., 1998, 274, pp. 217–21.

    Article  Google Scholar 

  77. V.A. Yartys, H. Fjellvåg, B.C. Hauback, A.B. Riabov, and M.H. Sørby: “Neutron Diffraction Studies of Zr-Containing Intermetallic Hydrides With Ordered Hydrogen Sublattice. II. Orthorhombic Zr3FeD6.7 With Filled Re3B-Type Structure,” J. Alloys Compd., 1998, 278, pp. 252–59.

    Article  Google Scholar 

  78. D.P. Abraham and J.W. Richardson: “Microstructure of the Zirconium-8 wt.% Stainless Steel Alloy” in Long Term Stability of High Temperature Materials 1999 (128th TMS Ann. Meeting, San Diego, California, 1999), G.E. Fuchs, ed., TMS, Warrendale, PA, USA, pp. 169–79.

  79. L. Kumar, R.V. Ramanujan, R. Tewari, P. Mukhopadhyay, and S. Banerjee: “Active Eutectoid Decomposition in Zr-3 wt.% Fe,” Scr. Mater., 1999, 40, pp. 723–28.

    Article  Google Scholar 

  80. D.P. Abraham: “Role of Laves Intermetallics in Nuclear Waste Disposal,” 5th Int. Conf. Structural Functional Intermetallics, Vancouver, Canada, TMS, Warrendale, PA, USA, 2000.

    Google Scholar 

  81. O.A. Bannykh, E.N. Sheftel, A.I. Krikunov, D.E. Kaputkin, G.Sh. Usmanova, and R.E. Stroug: “Changes of Chemical Composition and Structure of Soft Magnetic Nanocrystalline Fe-Zr-N Alloy Under Vacuum Annealing,” J. Magn. Magn. Mater., 2000, 215–216, pp. 397–99.

    Article  Google Scholar 

  82. O.A. Bannykh, E.N. Sheftel, A.I. Krikunov, D.E. Kaputkin, G.Sh. Usmanova, and R.E. Strug: “Structure and Chemistry of Magnetically Soft Fe-Zr and Fe-Zr-N Thin Films,” Metally—Ross. Akad. Nauk, 2000, pp. 54–56.

  83. S. Fukada, Y. Toyoshima, and M. Nishikawa: “Zr2Fe and Zr(Mn0.5Fe0.5)2 Particle Beds for Tritium Purification and Impurity Removal in a Fusion Fuel-Cycle,” Fusion Eng. Design, 2000, 49–50, pp. 805–09.

    Article  Google Scholar 

  84. D.D. Keiser Jr., D.P. Abraham, and J.W. Richardson Jr: “Influence of Technetium on the Microstructure of a Stainless Steel-Zirconium Alloy,” J. Nucl. Mater., 2000, 277, pp. 333–38.

    Article  ADS  Google Scholar 

  85. K.S. Kumar, L. Pang, C.T. Liu, J. Horton, and E.A. Kenik: “Structural Stability of the Laves Phase Cr2Ta in a Two-Phase Cr-Cr2Ta Alloy,” Acta Mater., 2000, 48, pp. 911–23.

    Article  Google Scholar 

  86. H. Okamoto: “Co-Nb (Cobalt-Niobium),” J. Phase Equilibria, 2000, 21, p. 495.

    Article  Google Scholar 

  87. G. Sauthoff: “Multiphase Intermetallic Alloys for Structural Applications,” Intermetallics, 2000, 8, pp. 1101–09.

    Article  Google Scholar 

  88. M. Jiang, K. Oikawa, T. Ikeshoji, L. Wulff, and K. Ishida: “Thermodynamic Calculations of Fe-Zr and Fe-Zr-C Systems,” J. Phase Equilibria, 2001, 22, pp. 406–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, F., Sauthoff, G. & Palm, M. Experimental determination of intermetallic phases, phase equilibria, and invariant reaction temperatures in the Fe-Zr system. JPE 23, 480–494 (2002). https://doi.org/10.1361/105497102770331172

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497102770331172

Keywords

Navigation