Skip to main content
Log in

An overview of the development of Al-Si-Alloy based material for engine applications

  • Processing
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The development of Al-Si alloy and its based material for engine application is reported in this paper, focusing on improving the material’s fatigue limit and wear resistance, which are two important properties for engine block materials. The paper begins with a description of the microstructure (primary and eutectic phases, intermetallics, and casting defects) of Al-Si alloy and its effects on this material’s fatigue and wear behaviors. Then, some recent techniques to enhance these two properties are discussed such as alloying, composite production, and casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASM: “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials,” ASM Handbook, Vol. 2, ASM International, Materials Park, OH, 1990.

    Google Scholar 

  2. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: “Binary Alloy Phase Diagrams,” ASM International, Materials Park, OH, 1990.

    Google Scholar 

  3. W. Hume-Rothery and G.V. Raynor: The Structure of Metals and Alloys, Institute of Metals, 1962.

  4. W.B. Pearson: Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2, Pergamon Press, 1967.

  5. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, 1976.

  6. N. Roy, A.M. Samuel, and F.H. Samuel: “Porosity Formation in Al9wt%Si-3wt%Cu Alloy Systems: Metallurgraphic Observations,” Metall. Mater. Trans. A., 1996, 27A, pp. 415–29.

    Article  CAS  Google Scholar 

  7. C.H. Caceres, M.B. Djurdjevic, T.J. Stockwell, and J.H. Sokolowski: “Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys,” Scripta Mater., 1999, 40(5), pp. 631–37.

    Article  CAS  Google Scholar 

  8. M.D. Dighe and A.M. Gokhale: “Relationship Between Microstructural Extremum and Fracture Path in a Cast Al-Si-Mg Alloy,” Scripta Metal., 1997, 37(9), pp. 1435–40.

    Article  CAS  Google Scholar 

  9. S. Kumai, J.Q. Hu, Y. Higo, and S. Nunomura: “Effects of Solidification Structure on Fatigue Crack Growth in AC4CH Cast Aluminum Alloys,” J. Jap. Instit, Light Metals (Jap.), 1995, 45(4), pp. 198–203.

    Article  CAS  Google Scholar 

  10. G. Lutjering and J.W. Martin: Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, Cambridge, UK, 142, 1980.

    Google Scholar 

  11. H. Torabian, J.P. Pathak, and S.N. Tiwari: “Wear Characteristics of Al-Si Alloys,” Wear, 1994, 172, pp. 49–58.

    Article  CAS  Google Scholar 

  12. E. Mark, J.G. Conley, and M.E. Fine: “The Effect of Microscopic Inclusion Location and Silicon Segregation on Fatigue Lifetimes of Aluminum Alloy A356 Castings,” Mater. Sci. Eng., 2000, A285, pp. 43–48.

    Google Scholar 

  13. H. Jiang, P. Bowen, and J.F. Knott: “Fatigue Performance of a Cast Aluminum Alloy Al-7Si-Mg With Surface Defects,” J. Mater. Sci., 1999, 34, pp. 719–25.

    Article  CAS  Google Scholar 

  14. K.P. Rogers and C.J. Heathcock: “Controlled Casting of Al-Si Hypereutectic Alloys,” Patent Number US5316070, 31 May 1994.

  15. J. Barresi, W. Thompson, C.J. Heathcock, and B.J. Costello: Machining of Al-Si-Alloys, Institute of Metals and Materials Australasia, the Materials Society of the IEAust (Australia), pp. 1–12, 1992.

  16. Anon: “Developments in Light Metals,” Met. Prog., 1986, 129(6), pp. 35–36, 38, 43–44.

  17. D.E. Kelly and D.M. Smith: “Microstructural Control of High Strength Wear Resistant Aluminum Foundry Alloys,” Australasian Instit. Met., I4–I6, 1985.

  18. S.B. Kim, D.A. Koss, and D.A. Gerard: “High Cycle Fatigue of Squeeze Cast Al/SiCw Composites,” Mater. Sci. Eng., 2000, A277, pp. 123–33.

    Article  CAS  Google Scholar 

  19. S. Long, O. Beffort, C. Cayron, and C. Bonjour: “Macrostructure and Mechanical Properties of a High Volume Fraction SiC Particle Reinforced AlCu4MgAg Squeeze Casting,” Mater. Sci. Eng., 1999, A269, pp. 175–85.

    Article  CAS  Google Scholar 

  20. S.C. Tjong, S.Q. Wu, and H.C. Liao: “Wear Behavior of an Al-12%Si Alloy Reinforced With a Low Volume Fraction of SiC Particles,” Compos. Sci. Technol., 1997, 57, pp. 1551–58.

    Article  CAS  Google Scholar 

  21. P. Balan, R.M. Pillai, K.G. Satyanrayana, and B.C. Pai: “Density, Ultimate Tensile Strength and Microstructure of a Squeeze Cast Al-11.8Si-3Mg-5Graphite Composite,” Can. Metall. Q., 1994, 33(3), pp. 255–58.

    Article  CAS  Google Scholar 

  22. S.F. Moustafa: “Casting of Graphitic Al-Si Base Composites,” Can. Metall. Q., 1994, 33(3), pp. 259–64.

    Article  CAS  Google Scholar 

  23. B.P. Krishnan, N. Raman, K. Narayanaswamy, and P.K. Rohatgi: “Performance of an Al/Si/Graphite Particle Composite Piston in a Diesel Engine (Retroactive Coverage),” Wear, 1980, 60(1), pp. 205–15.

    Article  CAS  Google Scholar 

  24. M. Roy, B. Venkataraman, V.V. Bhanuprasad, Y.R. Mahajan, and G. Sundararajan: “The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites,” Metall. Trans. A (USA), 1992, 23A(10), pp. 2833–47.

    Article  CAS  Google Scholar 

  25. K. Shibata and H. Ushio: “Tribological Application of MMC for Reducing Engine Weight,” Tribol. Int., 1994, 27, pp. 39–44.

    Article  CAS  Google Scholar 

  26. C.M. Allen, S. Kumar, L. Carroll, K.A.Q. O’Reilly, and H. Cama: “Electron Beam Surface Melting of Model 1200 Al Alloys,” Mater. Sci. Eng. A (Switzerland), 2001, 304–306, pp. 604–07.

    Article  Google Scholar 

  27. M.A. Meshkov: “Features of Melting of Aluminum Alloys in Plasma Are Direct Current Furnaces,” Tsvetnye Metally (Russia), 2000, 8, pp. 130–31.

    Google Scholar 

  28. H. Osono, H. Maeta, K. Matsusaka, and T. Kino: “Crystal Structure of Aluminum Melted in High Vacuum,” J. Jap. Instit. Met. (Japan), 2001, 65(3), pp. 143–46.

    Article  CAS  Google Scholar 

  29. Z. Zhang and X. Bian: “Optimum Time for Pouring Aluminum Melt After Being Refined,” Foundry (China), 1999, 11, pp. 1–3, 7.

    Google Scholar 

  30. I.N. Ganiev, N.S. Olimov, and B.B. Eshov: “Study of Oxidation of Al-Si Melts Exposed to Air,” Izvestiya Rossiiskaya Akademiya Nauk, Metally (Russia), 2000, 2, pp. 129–33.

    Google Scholar 

  31. R.R. Roy, T. Utigard, and C. Dupuis: “Inclusion Removal Kinetics During Chlorine Fluxing Molten Aluminum, Light Metals 2001” in Proc. Technical Sessions Presented by TMS Aluminum Committee, 130th TMS Annual Meeting, New Orleans, LA, 11–15, Feb, 2000.

  32. P. Li, D. Zeng, J. Jia, and Q. Li: “Modification Effect and Mechanism of Sr, Na in Al-Si Alloy,” Chinese J. Mech. Eng. (China), 2000, 36(2), pp. 81–84.

    Article  Google Scholar 

  33. Z. Zhang, X. Bian, and X. Liu: “Heredity of Hydrogen in Al Alloys During Melting Process,” Mater. Sci. Forum (Switzerland), 2000, 331–337(1), pp. 307–12.

    Article  Google Scholar 

  34. A.I. Semenukhin and B.V. Ovsyannikov: “Development of Degassing Technology of Aluminum Alloys at Kamensk-Ural’skii Metallurgical Works,” Tekhnol. Legkikh Splavov, 1999, 5, pp. 8–10.

    Google Scholar 

  35. D.A. Larsen: “Degassing Aluminum Using Static Fine-Pore Refractory Diffusers,” JOM (USA), 1997, 49(8), pp. 27–28, 67.

    Article  CAS  Google Scholar 

  36. R. Zhang, Q.F. Cao, S.X. Pang, and L. Liu: “Dissolution Kinetics of Primary Silicon for Hypereutectic Al-Si Alloy,” Chinese J. Nonferrous Metals (China), 2000, 10(1), pp. 89–91.

    CAS  Google Scholar 

  37. G. Fu, F. Sun, L. Wang, and J. Kang: “Analysis and Preliminary Discussion of Present Situation of Master Alloy Refining to Aluminum Alloy,” Tezhong Zuzao Ji Youse Hejin (Special Casting & Nonferrous Alloys) (China), 2001, pp. 50–53.

  38. T.T. Kondratenko, F.V. Klyuev, and S.P. Gerasimov: “New Strontium Master Alloys,” Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgia (Russia), 1999, 3, pp. 24–27.

    Google Scholar 

  39. R. Shibata: “SSM Activities in Japan” in Proc. 5th Int. Conf. on Semi-Solid Processing of Alloys and Composites, Golden, CO, 23–25 June, 1998.

  40. H. Wang: “Characterization and Shear Behavior of Semi-Solid Al-7Si-0.35Mg Alloy Microstructure,” Aluminum Trans., 2000, 2(1), pp. 57–66.

    CAS  Google Scholar 

  41. G.A. Chadwick: “Castings-Current Practice and Future Potential,” Met. Mater., 1986, 2, pp. 693–98.

    CAS  Google Scholar 

  42. S. Murali, K.T. Kashyap, K.S. Raman, and K.S.S. Murthy: “Inhibition of Delayed Ageing by Trace Additions in Al-7Si-0.3Mg Cast Alloy,” Scipta Metall. Mater., 1993, 29(11), pp. 1421–26.

    Article  CAS  Google Scholar 

  43. A.W. Zhu and E.A. Starke: “Stress Aging of Al-xCu Alloys: Experiments,” Acta Mater. (USA), 2001, 49(12), pp. 2285–95.

    Article  CAS  Google Scholar 

  44. M. Furuta and Y. Nakayama: “Effect of Solution Treatment Temperature on Precipitation Behavior in Al-7%Mg Alloy Improved by Chromium or Manganese Addition,” J. Jap. Instit. Light Metals (Japan), 2001, 51(6), pp. 318–23.

    Article  CAS  Google Scholar 

  45. S. Morita, H. Toda, A. Takahashi, A. Hoshiyama, T. Kobayashi, and H. Nagashima: “Effects of Quenching Rate on Mechanical Properties of 6061 Aluminum Alloy,” J. Jap. Instit. Light Metals (Japan), 2001, 51(6), pp. 307–12.

    Article  CAS  Google Scholar 

  46. J.H. Sokolowski, M.B. Djurdjevic, C.A. Kierkus, and D.O. Northwood: “Improvement of 319 Aluminum Alloy Casting Durability by High Temperature Solution Treatment,” J. Mater. Processing Technol. (Netherlands), 2001, 109(1–2), pp. 174–80.

    Article  CAS  Google Scholar 

  47. R-H Wu and M. Feng: “Polymer Quenching of Aluminum Alloy Parts of B-757 Aircraft,” Heat Treatment Met. (China), 2001, 1, pp. 48–50.

    Google Scholar 

  48. P. Ouellet and F.H. Samuel: “Effect of Mg on the Ageing Behavior of Al-Si-Cu 319 Type Aluminum Casting Alloys,” J. Mater. Sci., 1999, 34, pp. 4671–97.

    Article  CAS  Google Scholar 

  49. H.V. Atkinson and S. Davies: “Fundamental Aspects of Hot Isostatic Pressing: An Overview,” Metall. Mater. Trans. A, 2000, 31A, pp. 2981–3000.

    Article  CAS  Google Scholar 

  50. C. Nyahumwa, N.R. Green, and J. Campbell: “Influence of Casting Technique and Hot Isostatic Pressing on the Fatigue of an Al-7Si-Mg Alloy,” Metall. Mater. Trans. A, 2001, 32A, pp. 349–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, H. An overview of the development of Al-Si-Alloy based material for engine applications. J. of Materi Eng and Perform 12, 288–297 (2003). https://doi.org/10.1361/105994903770343132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994903770343132

Keywords

Navigation