Skip to main content
Log in

Fatigue crack/residual stress field interactions and their implications for damage-tolerant design

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Residual stress fields are now widely accepted to have significant influence on fatigue crack growth. Tensile stresses have detrimental effects on fatigue lives, whereas compressive residual stresses can be beneficial. Control of fatigue lives via residual stress is now established in many industrial applications, using techniques such as shot peening or cold expansion. However, knowledge of the processes that occur when a fatigue crack grows through a pre-existing stress field is far from complete. Although the residual stress field will clearly have an effect on crack growth, the crack will equally have an effect on the residual stress field. The determination of this effect is not trivial, and direct measurement may be the designer’s best safeguard. This article outlines the complementary effects that a growing fatigue crack and a residual stress field have on each other. Two types of residual stress field are considered: mechanically induced and thermally induced. The results are discussed in terms of the implications that residual stress interactions have for damage-tolerant-based design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Radhakrishnan and P. S. Baburamani,Int. J. Fract., Vol 12, 1976, p 369–380

    CAS  Google Scholar 

  2. J.H. Underwood, L.P. Pook, and J.K. Sharples, inFlaw Growth and Fracture, ASTM STP 631, ASTM, Philadelphia, 1977, p 402–415

    Book  Google Scholar 

  3. B.M. Kapadia, inFatigue Testing of Weldments, ASTM STP 648, D.W. Hoeppner, Ed., ASTM, Philadelphia, 1978, p 244–260

    Chapter  Google Scholar 

  4. G. Glinka, inFracture Mechanics, ASTM STP 677, C.W. Smith, Ed., ASTM, Philadelphia, 1979, p 198–214

    Chapter  Google Scholar 

  5. G.J. Lloyd and J.D. Walls,Eng. Fract. Mech., Vol 13, 1980, p 897–911

    Article  CAS  Google Scholar 

  6. A.J. Fletcher, W. Geary, and J.E. King, inAnalytical and Experimental Methods for Residual Stress Effects in Fatigue, ASTM STP 1004, R.L. Champoux, J.H. Underwood, and J.A. Kapp, Ed., ASTM, Philadelphia, 1988, p 82–96

    Chapter  Google Scholar 

  7. M. Beghini and L. Bertini,Eng. Fract. Mech., Vol 36, 1990, p 379–387

    Article  Google Scholar 

  8. K.J. Kang, J.H. Song, and Y.Y. Earmme,Fat. Fract. Eng. Mater. Struct., Vol 13, 1990, p 1–13

    Article  Google Scholar 

  9. D.M. Knowles and J.E. King,Mater. Sci. Tech., Vol 7, 1991, p 1015–1020

    Article  CAS  Google Scholar 

  10. H.K. Tönshoff and F. Kroos, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 615–623

    Google Scholar 

  11. L. Jinkui, S. Peige, W. Shengping, and Y. Mei, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 1002–1007

    Google Scholar 

  12. P. Holdway, R. Cook, and A.W. Bowen, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 1046–1054

    Google Scholar 

  13. M. Beghini, L. Bertini, and E. Vitale,Fat. Fract. Eng. Mater. Struct., Vol 17, 1994, p 1433–1444

    Article  Google Scholar 

  14. M.E. Fitzpatrick, M.T. Hutchings, J.E. King, D.M. Knowles, and P.J. Withers,Metall. Mater. Trans., Vol 26A, 1995, p 3191–3198

    Article  CAS  Google Scholar 

  15. H. Wohlfahrt, R. Kopp, and O. Vöhringer, Ed.,Shot Peening, Deutsche Gesellschaft für Metallkunde, 1987

  16. W. Elber, inFracture Toughness and Slow-Stable Cracking, ASTM STP 559, ASTM, Philadelphia, 1974, p 45–58

    Book  Google Scholar 

  17. M.D.B. Wilks, D. Nowell, and D.A. Hills, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 1238–1245

    Google Scholar 

  18. Y.C. Lam and K.S. Lian,Theoret. Appl. Fract. Mech., Vol 12, 1989, p 59–66

    Article  Google Scholar 

  19. R.A. Winholtz and J.B. Cohen,Mater. Sci. Eng., Vol A154, 1992, p 155–163

    Article  CAS  Google Scholar 

  20. M.D. Halliday and C.J. Beevers,Int. J. Fract., Vol 15, 1979, p R27-R30

    Article  CAS  Google Scholar 

  21. R.O. Ritchie,Mater. Sci. Eng., Vol A103, 1988, p 15–28

    Article  CAS  Google Scholar 

  22. S. Suresh,Fatigue of Materials, Cambridge University Press, Cambridge, MA, 1991

    Google Scholar 

  23. Proc. Fourth Int. Conf. Residual Stress, Society for Experimental Mechanics, Bethel, CT, 1994

  24. A.J. Allen, M.T. Hutchings, C.G. Windsor, and C. Andreani,Adv. Phys., Vol 34, 1985, p 445–473

    Article  CAS  Google Scholar 

  25. M.T. Hutchings and C.G. Windsor, inMethods of Experimental Physics, Vol 23,Neutron Scattering, K. Skold and D.L. Price, Ed., 1987, Academic Press, New York, 1987, p 405–482

    Chapter  Google Scholar 

  26. M.T. Hutchings,Nondestr. Test. Eval, Vol 5, 1990, p 395–413

    Article  Google Scholar 

  27. M.T. Hutchings, inMeasurement of Residual and Applied Stress Using Neutron Diffraction, M.T. Hutchings and A.D. Krawitz, Ed., Kluwer Academic Publishers, Dordrecht, 1992, p 3–18

    Chapter  Google Scholar 

  28. L. Edwards, D.Q. Wang, M.W. Johnson, J.S. Wright, H.G. Priesmeyer, F. Rustichelli, G. Albertini, P J. Withers, and I.B. Harris, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 220–229

    Google Scholar 

  29. P.J. Withers, inKey Eng. Mater., G.M. Newaz, H. Neber-Aeschbacher, and F.H. Wöhlbier, Ed., Vol 108–110,Ceramic Matrix Composites, Trans Tech Publications, Switzerland, 1995, p 291–314

    Google Scholar 

  30. G. Sachs,Z. Metallkd., Vol 19, 1927, p 352–362 (in German)

    CAS  Google Scholar 

  31. J.W. Lambert,Proc. Soc. Exper. Stress Anal, Vol 12, 1954, p91–98

    Google Scholar 

  32. V. Weiss,Proc. Soc. Exper. Stress Anal, Vol 15, 1960, p 53–61

    Google Scholar 

  33. A.T. özdemir and L. Edwards,J. Strain Anal. Eng. Des., Vol 31, 1996, p 413–421

    Article  Google Scholar 

  34. L. Pintschovius, V. Jung, E. Macherauch, R. SchÄfer, and O.] Vöhringer, inResidual Stress and Stress Relaxation, E. Kula and V. Weiss, Ed., Plenum Press, New York, 1982, p 467–482

    Chapter  Google Scholar 

  35. C.G. Windsor and M.T. Hutchings, Report AEA-InTec-0886, AEA Industrial Technology, Harwell, UK, 1992

    Google Scholar 

  36. M.T. Hutchings, Report AEA-InTec-1289, AEA Industrial Technology, Harwell, 1993

    Google Scholar 

  37. M.E. Fitzpatrick, M.T. Hutchings, and P.J. Withers,Physica B, Vol 213, 1995, p 790–792

    Article  Google Scholar 

  38. P. Jeanmart and J. Bouvaist,Mater. Sci. Technol, Vol 1, 1985, p 765–769

    Article  CAS  Google Scholar 

  39. P.H. Jeanmart and J. Bouvaist, inInternational Guidebook on Residual Stresses, A. Niku-Lari, Ed., Pergamon Press, New York, 1987, p 327–340

    Chapter  Google Scholar 

  40. S.-D. Tsai, D. Mahulikar, H.L. Marcus, I.C. Noyan, and J.B. Cohen,Mater. Sci. Eng., Vol 47, 1981, p 145–149

    Article  CAS  Google Scholar 

  41. R.J. Arsenault and M. Taya, inICCM V, W.C. Harrigan, J. Strife, and A.K. Dhingra, Ed., TMS, Warrendale, PA, 1985, p 21–36

    Google Scholar 

  42. H.M. Ledbetter and M.W. Austin, inAdv. X-Ray Anal., C.S. Barrett, J.B. Cohen, J.J. Faber, R. Jenkins, D.E. Leyden, J.C. Russ, and P.K. Predecki, Ed., Plenum Press, New York, 1985, p 71–78

    Google Scholar 

  43. Z.M. Sun, J.B. Li, Z.G. Wang, and W.J. Li,Acta Metall. Mater., Vol 40, 1992, p 2961–2966

    Article  CAS  Google Scholar 

  44. Y. Ikeuchi, T. Hanabusa, and H. Fujiwara, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 732–740

    Google Scholar 

  45. M. Ceretti, C. Braham, J.L. Lebrun, J.P. Bonnafé, M. Perrin, and A. Lodini, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 32–39

    Google Scholar 

  46. R.L. Champoux, inFatigue Prevention and Design, J.T. Barnby, Ed., Chameleon Press, London, 1986, p 35–45

    Google Scholar 

  47. A.T. özdemir, R. Cook, and L. Edwards, inDurability and Structural Integrity of Airframes, A.F. Blom, Ed., EMAS, Warley, UK, 1993, p 207–237

    Google Scholar 

  48. A.T. özdemir, and L. Edwards,Fat. Fract. Eng. Mater. Struct.,Vol 20, 1997, p 1443–1451

    Article  Google Scholar 

  49. M.E. Fitzpatrick, M.T. Hutchings, and P.J. Withers,Acta Mater., Vol 45, 1997, p 4867–4876

    Article  CAS  Google Scholar 

  50. P.J. Withers, A.P. Clarke, and M.E. Fitzpatrick, inIntrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems, J.J. Lewandowski and J.W.H. Hunt, Ed., TMS, Warrendale, PA, 1995, p 49–56

    Google Scholar 

  51. A.T. özdemir, Ph.D. thesis, The Open University, Milton Keynes, UK, 1993

    Google Scholar 

  52. D.P. Rooke and D.J. Cartwright,Compendium of Stress Intensity Factors, HMSO, London, 1976

    Google Scholar 

  53. H. Tada, P.C. Paris, and G.R. Irwin,The Stress Analysis of Cracks Handbook, Paris Productions Incorporated and Del Research Corporation, St. Louis, MO, 1985

    Google Scholar 

  54. X.-R. Wu and A.J. Carlsson,Weight Functions and Stress Intensity Factor Solutions, Pergamon Press, Oxford, 1991

    Google Scholar 

  55. H.F. Bueckner,Z. Ang. Math. Mechan., Vol 50, 1970, p 529–546

    Google Scholar 

  56. J.R. Rice,Int. J. Solids Struct., Vol 8, 1972, p 751–758

    Article  Google Scholar 

  57. P.C. Paris, R.M. McMeeking, and H. Tada, inCracks and Fracture, ASTM STP 601, ASTM, Philadelphia, 1976, p 471–489

    Book  Google Scholar 

  58. P.C. Paris and G.C. Sih, inFracture Toughness Testing and Its Applications, ASTM STP 381, ASTM, Philadelphia, 1965, p 30–81

    Book  Google Scholar 

  59. H. Tada and P.C. Paris,Int. J. Fract., Vol 21, 1983, p 279–284

    Article  Google Scholar 

  60. A.P. Parker, inResidual Stress Effects in Fatigue, ASTM STP 776, ASTM, Philadelphia, 1982, p 12–31

    Google Scholar 

  61. W. Elber,Eng. Fract. Mech., Vol 2, 1970, p 37–45

    Article  Google Scholar 

  62. H. Führing and T. Seeger,Eng. Fract. Mech., Vol 11, 1979, p 99–122

    Article  Google Scholar 

  63. N.A. Fleck,Eng. Fract. Mech., Vol 25, 1986, p 441–449

    Article  Google Scholar 

  64. N. Walker and C.J. Beevers,Fat. Eng. Mater. Struct., Vol 1, 1979, p 135–148

    Article  CAS  Google Scholar 

  65. G.T. Gray, J.C. Williams, and A.W. Thompson,Metall. Trans., Vol l4A, 1983, p 421–433

    Article  Google Scholar 

  66. M.E. Fitzpatrick, D. Bhattacharjee, A.M. Cree, and C.R.S. Daykin,Scr. Mater., Vol 35, 1996, p 1335–1340

    Article  CAS  Google Scholar 

  67. I.R. Wallhead and L. Edwards, inFAA/NASA Int. Symp. Adv. Structural Integrity Methods for Airframe Durability and Damage Tolerance, C.E. Harris, Ed., 1994, p 933–946

  68. M.E. Fitzpatrick, Ph.D. thesis, University of Cambridge, 1995

  69. H.-C. Choi and J.-H. Song,Fat. Fract. Eng. Mater. Struct., Vol 18, 1995, p 105–117

    Article  CAS  Google Scholar 

  70. M.E. Fitzpatrick, T.J. Downes, M.T. Hutchings, D.M. Knowles, J.E. King, and P.J. Withers, inProc. Fourth Int. Conf. Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 1994, p 559–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzpatrick, M.E., Edwards, L. Fatigue crack/residual stress field interactions and their implications for damage-tolerant design. J. of Materi Eng and Perform 7, 190–198 (1998). https://doi.org/10.1361/105994998770347918

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994998770347918

Keywords

Navigation