Skip to main content

Advertisement

Log in

Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may be encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser-simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8% Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m K to 1.15, 1.19, and 1.5 W/m K after 30 h of testing at surface temperatures of 990, 1100, and 1320 °C, respectively, Hardness and elastic modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and microindentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface and to 7.5 GPa at the ceramic coating surface after 120 h of testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced microporosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various TBC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “CMSX Property Data,” Cannon-Muskegon Corporation, Muskegon, MI, 1994.

  2. J.T. DeMasi, K.D. Sheffler, and M. Ortiz: “Thermal Barrier Coating Life Prediction Model Development: Phase I-Final Report,” NASA CR-182230, NASA, Washington, DC, Dec. 1989.

    Google Scholar 

  3. R.A. Miller and G.W. Leissler: “Characterization and Durability Testing of Plasma-Sprayed Zirconia-Yttria and Hafnia-Yttria Thermal Barrier Coatings,” NASA Technical Paper 3296, NASA, Washington, DC, Mar. 1993.

    Google Scholar 

  4. D. Zhu and R.A. Miller: “Determination of Thermal Conductivity Change Kinetics under Steady-State Laser Heat Flux Conditions,” NASA Technical Memorandum, 209069, NASA, Washington, DC, 1999.

    Google Scholar 

  5. C.H. Liebert: “Emittance and Absorptance of NASA Ceramic Thermal Barrier Coating System,” NASA Technical Paper TP-1190, NASA, Washington, DC, 1978.

    Google Scholar 

  6. C.H. Liebert: “Emittance and Absorptance of the National Aeronautics and Space Administration Ceramic Thermal Barrier Coating,” Thin Solid Films, 1978, vol. 53, pp. 235–40.

    Article  CAS  Google Scholar 

  7. D. Zhu and R.A. Miller: “Determination of Creep Behavior of Thermal Barrier Coatings under Laser Imposed Temperature and Stress Gradients,” NASA Technical Memorandum 113169, Army Research Laboratory Report ARL-TR-1565, Nov. 1997; also in J. Mater. Res., 1999, vol. 14, pp 146–61.

  8. D.B. Marshall, T. Noma, and A.G. Evans: J. Am. Ceram. Soc., 1982, vol. 65, pp. C175-C176.

    Article  CAS  Google Scholar 

  9. S.-H. Leigh, C.-K. Lin, and C.C. Berndt: J. Am. Ceram. Soc., 1997, vol. 80, pp. 2093–99.

    Article  CAS  Google Scholar 

  10. J.P. Singh, M. Sutaria, and M. Ferber: Ceram. Eng. Sci. Proc., 1997, vol. 18, pp. 191–200.

    Article  CAS  Google Scholar 

  11. H.E. Eaton, J.R. Linsey, and R.B. Dinwiddie: “The Effect of Thermal Aging on the Thermal Conductivity of Plasma Sprayed Fully Stabilized Zirconia,” Thermal Conductivity, vol. 22, T.W. Tong, Ed.: Technomic Publishing Co., Inc., Lancaster, Pennsylvania, 1994, pp. 289–300.

    Google Scholar 

  12. R.B. Dinwiddie, S.C. Beecher, W.D. Porter, and B.A. Nagaraj: “The Effect of Thermal Aging on the Thermal Conductivity of Plasma Sprayed and EB-PVD Thermal Barrier Coatings,” presented at The International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK, ASME Paper 96-GT-282, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Miller, R.A. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. J Therm Spray Tech 9, 175–180 (2000). https://doi.org/10.1361/105996300770349890

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996300770349890

Keywords

Navigation