Skip to main content
Log in

Calibration of a two-color imaging pyrometer and its use for particle measurements in controlled air plasma spray experiments

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Advances in digital imaging technology have enabled the development of sensors that can measure the temperature and velocity of individual thermal spray particles over a large volume of the spray plume simultaneously using imaging pyrometry (IP) and particle streak velocimetry (PSV). This paper describes calibration, uncertainty analysis, and particle measurements with a commercial IP-PSV particle sensor designed for measuring particles in an air plasma spray (APS) process. Yttria-stabilized zirconia (YSZ) and molybdenum powders were sprayed in the experiments. An energy balance model of the spray torch was used to manipulate the average particle velocity and temperature in desired ways to test the response of the sensor to changes in the spray characteristics. Time-resolved particle data were obtained by averaging particle streaks in each successive image acquired by the sensor. Frame average particle velocity and temperature were found to fluctuate by 10% during 6 s acquisition periods. These fluctuations, caused by some combination of arc instability, turbulence, and unsteady powder feeding, contribute substantially to the overall particle variability in the spray plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gougeon, C. Moreau, and F. Richard: “On-Line Control of Plasma Sprayed Particles in the Aerospace Industry” in Advances in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1995, pp. 149–55.

    Google Scholar 

  2. M. Prystay, P. Gougeon, and C. Moreau: “Correlation between Particle Temperature and Velocity and the Structure of Plasma Sprayed Zirconia Coatings” in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 517–23.

    Google Scholar 

  3. R.N. Wright, J.R. Fincke, W.D. Swank, and D.C. Haggard: “Particle Velocity and Temperature Influences on the Microstructure of Plasma Sprayed Nickel” in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 511–16.

    Google Scholar 

  4. X. Jiang, J. Matejicek, A. Kulkarni, H. Herman, S. Sampath, D.L. Gilmore, and R.A. Neiser: “Process Maps for Plasma Spray Part II: Deposition and Properties” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 157–63.

    Google Scholar 

  5. R.L. Williamson, J.R. Fincke, and C.H. Chang: “A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 115–24.

    Google Scholar 

  6. J.R. Fincke, W.D. Swank, D.C. Haggard, T.M. Demeny, S.M. Pandit, and A.R. Kashani: “Feedback Control of the Subsonic Plasma Spray Process: System Model” in Advances in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1995, pp. 117–22.

    Google Scholar 

  7. G. Bourque, M. Lamontagne, and C. Moreau: “A New Sensor for On-Line Monitoring the Temperature and Velocity of Thermal Spray Particles” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 45–50.

    Google Scholar 

  8. J. Zierhut, K.D. Landes, W. Krömmer, and P. Heinrich: “Particle Flux Imaging (PFI) In-Situ Diagnostics for Thermal Coating Process” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 63–66.

    Google Scholar 

  9. J.R. Fincke and W.D. Swank: “Air-Plasma Spraying of Zirconia: Spray Characteristics and Standoff Distance Effect on Deposition Efficiency and Porosity” in Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, ed., ASM International, Materials Park, OH, 1992, pp. 513–18.

    Google Scholar 

  10. C.M. Hackett and G.S. Settles: “Independent Control of HVOF Particle Velocity and Temperature” in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 665–73.

    Google Scholar 

  11. B.M. Cetegen and W. Yu: “In-Situ Particle Temperature, Velocity, and Size Measurements in DC Arc Plasma Thermal Sprays,” J. Thermal Spray Technol., 1999, 8(1), pp. 57–67.

    Article  CAS  Google Scholar 

  12. K. Hollis and R. Neiser: “Particle Temperature and Flux Measurement Utilizing a Nonthermal Signal Correction Process,” J. Thermal Spray Technol., 1998, 7(3), pp. 392–402.

    Article  CAS  Google Scholar 

  13. J.R. Fincke, C.L. Jeffery, and S.B. Englert, “In-Flight Measurement of Particle Size and Temperature,” J. Phys. E: Sci. Instrum., 1988, 21, pp. 367–70.

    Article  CAS  Google Scholar 

  14. J.E. Craig, R.A. Parker, D.Y. Lee, F.S. Biancaniello, and S.D. Ridder: “A Two-Wavelength Imaging Pyrometer for Measuring Particle Temperature, Velocity and Size in Thermal Spray Processes” in Proceedings of the International Symposium on Advanced Sensors for Metal Processing, Industrial Materials Institute, NRC Canada, 1999, pp. 369–80.

    Google Scholar 

  15. J.E. Craig, R.A. Parker, D.Y. Lee, F.S. Biancaniello, S.D. Ridder, and S.P. Mates: “Particle Temperature Measurements by Spectroscopic and Two-Wavelength Streak Imaging” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 51–56.

    Google Scholar 

  16. A. Cezairliyan, “Design and Operational Characteristics of a High-Speed (Millisecond) System for the Measurement of Thermophysical Properties at High Temperatures,” J. Res. Nat. Bur. Stand. (U.S.), 1971, 75C(1), p. 7.

    Google Scholar 

  17. A. Cezairliyan, S. Krishnan, and J.L. McClure: “Simultaneous Measurements of Normal Spectral Emissivity by Spectral Radiometry and Laser Polarimetry at High Temperatures in Millisecond-Resolution Pulse-Heating Experiments: Application to Molybdenum and Tungsten,” Int. J. Thermophys., 1996, 17(6), pp. 1455–73.

    Article  CAS  Google Scholar 

  18. D. Basak, U.R. Kattner, J.L. McClure, D. Josell, and A. Cezairliyan: “Application of Laser Polarimetry to the Measurement of Specific Heat Capacity and Enthalpy of the Alloy 53Nb-47Ti (Mass%) in the Temperature Range 1600 to 2000 K by a Millisecond-Resolution Pulse Heating Technique,” Int. J. Thermophys., 2000, 21(4), pp. 913–26.

    Article  CAS  Google Scholar 

  19. D.P. Dewitt and G.D. Nutter: Theory and Practice of Radiation Thermometry, John Wiley-Interscience, New York, 1988.

    Google Scholar 

  20. F.A. Graybill and H.K. Iyer: Regression Analysis: Concepts and Applications, Duxbury Press, Belmont, CA, 1994.

    Google Scholar 

  21. P. Gougeon and C. Moreau: “In-Flight Particle Surface Temperature Measurement: Influence of the Plasma Light Scattered by the Particles” in Thermal Spray Coatings: Research, Design and Applications, C.C. Berndt and T.F. Bernecki, ed., ASM International, Materials Park, OH, 1993, pp. 13–18.

    Google Scholar 

  22. L. Leblanc and C. Moreau: “Study on the Long-Term Stability of Plasma Spraying” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 1233–39.

    Google Scholar 

  23. E. Pfender: “Heat and Momentum Transfer to Particles in Thermal Plasma Flows,” Pure Appl. Chem., 1985, 57(9), pp. 1179–95.

    CAS  Google Scholar 

  24. C.M. Hackett, G.S. Settles, and J.D. Miller: “On the Gas Dynamics of HVOF Thermal Sprays,” J. Thermal Spray Technol., 1994, 3(3), pp. 299–304.

    Article  CAS  Google Scholar 

  25. E. Pfender: “Plasma Jet Behavior and Modeling Associated with the Plasma Spray Process,” Thin Solid Films, 1994, 238, pp. 228–41.

    Article  CAS  Google Scholar 

  26. C.H. Chang and J.D. Ramshaw: “Modeling of Non-Equilibrium Effects in a High-Velocity Nitrogen-Hydrogen Plasma Jet,” Plasma Chem. Plasma Process., 1996, 16, pp. 5S-17S.

    Article  CAS  Google Scholar 

  27. M.I. Boulos, P. Fauchais, and E. Pfender: Thermal Plasmas, Fundamentals and Applications, Vol. 1, Plenum, New York, 1994.

    Google Scholar 

  28. A. Vardelle, P. Fauchais, B. Dussoubs, and N.J. Themelis: “Heat Generation and Particle Injection in a Thermal Plasma Torch,” Plasma Chem. Plasma Process., 1998, 18(4), pp. 551–74.

    Article  CAS  Google Scholar 

  29. F.S. Biancaniello, J.J. Conway, P.I. Espina, G.E. Mattingly, and S.D. Ridder: “Particle Size Measurement of Inert-Gas-Atomized Powder,” Mater. Sci. Eng., 1990, A124, pp. 9–14.

    CAS  Google Scholar 

  30. A.H. Lefevbre: Atomization and Sprays, Hemisphere, New York, 1989.

    Google Scholar 

  31. D.P.H. Hasselman, L.F. Johnson, L.D. Bentsen, R. Syed, H.L. Lee, and M.V. Swain: “Thermal Diffusivity and Conductivity of Dense Polycrystalline ZrO2 Ceramics: A Survey,” Am. Ceram. Soc. Bull., 1987, 66(5), pp. 799–806.

    CAS  Google Scholar 

  32. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin: “Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes,” J. Thermal Spray Technol., 1995, 4(1), pp. 50–58.

    Article  CAS  Google Scholar 

  33. F.M. White: Heat and Mass Transfer, Addison-Wesley, New York, 1991.

    Google Scholar 

  34. M. Vardelle, A. Vardelle, B. Dussoubs, P. Fauchais, T.J. Roemer, R.A. Neiser, and M.F. Smith: “Influence of Injector Geometry on Particle Trajectories: Analysis of Particle Dynamics in the Injector and Plasma Jet” in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 887–94.

    Google Scholar 

  35. D.L. Gilmore, R.A. Neiser, Y. Wan, and S. Sampath: “Process Maps for Plasma Spray Part I: Plasma-Particle Interactions” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 149–55.

    Google Scholar 

  36. J.R. Fincke, R.L. Williamson, and C.H. Chang: “Plasma Spraying of Functionally Graded Materials: Measured and Simulated Results” in Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, ed., ASM International, Materials Park, OH, 2000, pp. 141–48.

    Google Scholar 

  37. J.R. Fincke and R.A. Neiser: “Advanced Diagnostics and Modeling of Spray Processes,” MRS Bulletin, Materials Research Society, 2000, 25(7), pp. 26–31.

    CAS  Google Scholar 

  38. I. Ahmed and T.L. Bergman: “Three-Dimensional Simulation of Thermal Plasma Spraying of Partially Molten Ceramic Agglomerates,” J. Thermal Spray Technol., 2000, 9(2), pp. 215–24.

    Article  CAS  Google Scholar 

  39. Z. Duan, L. Beall, J. Schein, J. Heberlein, and M. Stachowicz: “Diagnostics and Modeling of an Argon/Helium Plasma Spray Process,” J. Thermal Spray Technol., 2000, 9(2), pp. 225–34.

    Article  CAS  Google Scholar 

  40. J.T. Walker, “Advances in Coriolis Technology for Precision Flow and Density Measurements of Industrial Fluids” in Proceedings of the Annual Symposium on Instrumentation for the Process Industries, Texas A&M University, College Station, TX, 1992, pp. 69–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mates, S.P., Basak, D., Biancaniello, F.S. et al. Calibration of a two-color imaging pyrometer and its use for particle measurements in controlled air plasma spray experiments. J Therm Spray Tech 11, 195–205 (2002). https://doi.org/10.1361/105996302770348853

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996302770348853

Keywords

Navigation