Skip to main content
Log in

Inclusion of aerodynamic non-equilibrium effects in supersonic plasma jet enthalpy probe measurements

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Low pressure plasma spraying (LPPS) is a thermal spraying technique that has found a niche for low oxidation products. It uses a low pressure environment (i.e., chamber pressure between 2 and 90 kPa) and yields supersonic plasma jets. The enthalpy probe technique is a common measurement method in plasmas. However LPPS jets are difficult to diagnose as their supersonic nature forces the apparition of a shock wave in front of any measuring device inserted in the jet. Incomplete or erroneous assumptions are usually invoked to overcome the difficulties associated with this shock wave and carry out the LPPS jet diagnosis from enthalpy probe measurements. In this work, a new device is designed to gain access to an additional physical quantity, which is needed to assess the aerodynamic non-equilibrium state of the jet. It is combined with enthalpy probe measurements, and the resulting set of experimental data is used with a numerical procedure based on gas dynamics theory, yielding free-stream supersonic plasma jet values from the measurements behind the induced shock wave. The results agree well with the phenomenology of supersonic jets in aerodynamic nonequilibrium. However this new method is restricted by the local thermodynamic equilibrium assumption, which is directly linked with the pressure and temperature conditions of the plasma jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fauchais and M. Vardelle, Plasma Spraying: Present and Future, Pure Appl. Chem., Vol 66 (No. 6), 1994, p 1247–1258

    CAS  Google Scholar 

  2. R.W. Smith and R. Novak, Thermal Spraying: Advances and Applications in US Thermal Spray Technology I. Technology and Materials, Powder Metall. Int., Vol 23 (No. 3), 1991, p 147–155

    CAS  Google Scholar 

  3. E. Pfender, Thermal Plasma Technology: Where Do We Stand and Where Are We Going?, Plasma Chem. Plasma P., Vol 19 (No. 1), 1999, p 1–31

    Article  CAS  Google Scholar 

  4. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 10(1), 2001, p 44–66

    Article  CAS  Google Scholar 

  5. P. Fauchais and A. Vardelle, Thermal Plasmas, IEEE T. Plasma Sci., Vol 25 (No. 6), 1997, p 1258–1280

    Article  CAS  Google Scholar 

  6. P. Fauchais, Thermal Plasma Engineering Today in Western Europe, High Temp. Chem. Proc., Vol 1, 1992, p 1–43

    Google Scholar 

  7. L. Prandtl, Essential of Fluid Dynamics, Hafner Publishing Company, New York, NY, 1952, 452 p 268

    Google Scholar 

  8. P.J. Meyer and D. Hawley, Electro-Plasma Inc. LPPS Production Systems, Thermal Spray Coatings: Properties, Processes and Applications, T.F. Benecki, Ed., May 4–10, 1991 (Pittsburgh, PA), ASM International, 1992, p 29–38

  9. J. Grey, Thermodynamic Methods of High-Temperature Measurement, ISA T., Vol 4 (No. 2), 1965, p 102–115

    Google Scholar 

  10. J. Grey, P.F. Jacobs, and M.P. Sherman, Calorimetric Probe for the Measurement of Extremely High Temperatures, Rev. Sci. Instrum., Vol 33 (No. 7), 1962, p 738–741

    Article  Google Scholar 

  11. S. Katta, J.A. Lewis, and W.H. Gauvin, A Plasma Calorimetric Probe, Rev. Sci. Instrum., Vol 44 (No. 10), 1973, p 1519–1523

    Article  CAS  Google Scholar 

  12. F.A. Vassallo, “Miniature Enthalpy Probes for High Temperature Gas Streams,” Aerospace Research Laboratories (USAF), Paper ARL 66-0115, Wright-Patterson Air Force Base, OH, 1966.

  13. F.J. Huber, “Probes for Measuring Mass Flux, Stagnation Point Heating, and Total Enthalpy of High Temperature Hypersonic Gas Flows,” AIAA Aerodynamic Testing Conference, AIAA Paper No. 66-750, Los Angeles, CA, Sept 1966

  14. F.A. Vassallo, “A Fast Acting Miniature Enthalpy Probe, AIAA Aerodynamic Testing Conference,” AIAA Paper No.68-391, San Francisco, CA, April 1968

  15. J. Grey and P.F. Jacobs, Experiments on Turbulent Mixing in a Partially Ionized Gas, AIAA J., Vol 2 (No. 3), 1964, p 433–438

    Google Scholar 

  16. J. Grey, M.P. Sherman, P.M. Williams, and D.B. Fradkin, Laminar Arc-jet Mixing and Heat Transfer: Theory and Experiments, AIAA J., Vol 4 (No. 6), 1965, p 986–993

    Google Scholar 

  17. T.J. O’Connor, E.H. Comfort, and L.A. Cass, Turbulent Mixing of an Axisymmetric Jet of Partially Dissociated Nitrogen with Ambient Air, AIAA J., Vol 4 (No. 11), 1966, p 2026–2032

    CAS  Google Scholar 

  18. L.A. Anderson and R.E. Sheldahl, Experiments with Two Flow-Swallowing Enthalpy Probes in High-Energy Supersonic Streams, AIAA J., Vol 9 (No. 9), 1971, p 1804–1810

    Google Scholar 

  19. M. Brossa and E. Pfender, Probe Measurements in Thermal Plasma Jets, Plasma Chem. Plasma P., Vol 8 (No. 1), 1988, p 75–90

    Article  CAS  Google Scholar 

  20. E. Pfender, J.R. Fincke, and R. Spores, Entrainment of Cold Gas into Thermal Plasma Jets, Plasma Chem. Plasma P., Vol 11 (No. 4), 1991, p 529–543

    Article  CAS  Google Scholar 

  21. A. Capetti and E. Pfender, Probe Measurements in Argon Plasma Jets Operated in Ambient Argon, Plasma Chem. Plasma P., Vol 9 (No. 2), 1989, p 329–341

    Article  CAS  Google Scholar 

  22. W.D. Swank, J.R. Fincke, and D.C. Haggard, Modular Enthalpy Probe and Gas Analyzer for Thermal Plasma Measurements, Rev. Sci. Instrum., Vol 64 (No. 1), 1993, p 56–62

    Article  CAS  Google Scholar 

  23. J.R. Fincke, C.H. Chang, W.D. Swank, and D.C. Haggard, Entrainment and Demixing in Subsonic Thermal Plasma Jets: Comparison of Measurements and Predictions, Int. J. Heat Mass Tran., Vol 37, 1994, p 1673–1682

    Article  Google Scholar 

  24. J.R. Fincke, W.D. Swank, S.C. Snyder, and D.C. Haggard, Enthalpy Probe Performance in Compressible Thermal Plasma Jets, Rev. Sci. Instrum., Vol 64 (No. 12), 1993, p 3585–3593

    Article  CAS  Google Scholar 

  25. M. Hollenstein, M. Rahmane, and M.I. Boulos, Aerodynamic Study of the Supersonic Induction Plasma Jet, M. Hrabovský, M. Konrád, and V. Kopecký, Ed., Organizing Committee of the 14th International Symposium on Plasma Chemistry, Prague, Czech Republic, 1999, p 257–261

    Google Scholar 

  26. J.R. Fincke, S.C. Snyder, and W.D. Swank, Comparison of Enthalpy Probe and Laser Light Scattering Measurement of Thermal Plasma Temperatures and Velocities, Rev. Sci. Instrum., Vol 64 (No. 3), 1993, p 711–718

    Article  CAS  Google Scholar 

  27. M. Rahmane, G. Soucy, and M.I. Boulos, Analysis of the Enthalpy Probe Technique for Thermal Plasma Diagnostics, Rev. Sci. Instrum., Vol 66 (No. 6), 1995, p 3424–3431

    Article  CAS  Google Scholar 

  28. J.-L. Dorier, M. Gindrat, C. Hollenstein, M. Loch, A. Refke, A. Salito, and G. Barbezat, Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition, Thermal Spray 2001: New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28–30, 2001 (Singapore), ASM International, 2001, p 759–764

  29. A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, John Wiley & Sons, New York, NY, 1953, 647, p 76–115

    Google Scholar 

  30. R. Henne, M. Müller, E. Proß, G. Schiller, F. Gitzhofer, and M.I. Boulos, Near-Net-Shape Forming of Metallic Bipolar Plates for Planar Solid Oxide Fuel Cells by Induction Plasma Spraying, J. Therm. Spray Technol., Vol 8 (No. 1), 1999, p 110–116

    Article  CAS  Google Scholar 

  31. M. Gindrat, J-L. Dorier, C. Hollenstein, M. Loch, A. Refke, A. Salito, and G. Barbezat, Effect of Specific Operating Conditions on the Properties of LPPS Plasma Jets Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., May 4–6, 2002 (Düsseldorf, Germany), DVS Deutscher Verband für Schweißen, DVS-Verlag GmBH, 2002, p 459–464

  32. B. Jodoin, M. Gindrat, J-L. Dorier, C. Hollenstein, M. Loch, and G. Barbezat, Modelling and Diagnostics of a Supersonic DC Plasma Jet Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., May 4–6, 2002 (Düsseldorf, Germany), DVS Deutscher Verband für Schweißen, DVS-Verlag GmBH, 2002, p 716–720

  33. J-L. Dorier, B. Jodoin, M. Gindrat, A. Blais, C. Hollenstein, and G. Barbezat, A Novel Approach to Interpret Enthalpy Probe Measurements in Low Pressure Supersonic Plasma Jets, R. D’Agostino, Ed., Organizing Committee of the 16th International Symposium on Plasma Chemistry, Taormina, Italy, 2003

  34. Y. Bartosiewicz, P. Proulx, and Y. Mercadier, A Self-Consistent Two-Temperature Model for the Computation of Supersonic Argon Plasma Jets, J. Phys. D App. Phys., Vol 35, 2002, p 2139–2148

    Article  CAS  Google Scholar 

  35. A.B. Murphy and C.J. Arundell, Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasmas, Plasma Chem. Plasma P., Vol 14 (No. 4), 1994, p 451–490

    Article  CAS  Google Scholar 

  36. M.I. Hoffert and H. Lien, Quasi-One-Dimensional, Nonequilibrium Gas Dynamics of Partially Ionized Two-Temperature Argon, Phys. Fluids, Vol 10 (No. 8), 1967, p 1769–1776

    Article  CAS  Google Scholar 

  37. E.P. Muntz, B.B. Hamel, and B.L. Maguire, Some Characteristics of Exhaust Plume Rarefaction, AIAA J., Vol 8 (No. 9), 1970, p 1651–1658

    Article  Google Scholar 

  38. J. Grey, Sensitivity Analysis for the Calorimetric Probe, Rev. Sci. Instrum., Vol 34 (No. 8), 1963, p 857–859

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blais, A., Jodoin, B., Dorier, JL. et al. Inclusion of aerodynamic non-equilibrium effects in supersonic plasma jet enthalpy probe measurements. J Therm Spray Tech 14, 342–353 (2005). https://doi.org/10.1361/105996305X59387

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996305X59387

Keywords

Navigation