Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters

Not Accessible

Your library or personal account may give you access

Abstract

A new lidar technique for measuring the profiles of backscatter ratio, atmospheric visibility, and atmospheric temperature is proposed. Based on the theory of high resolution Rayleigh/Mie scattering, the feasibility and advantages of using atomic vapor cells as blocking filters for measuring atmospheric parameters are demonstrated with a numerical example worked out in detail. Ten percent accuracy in determining backscatter ratio and visibility can be achieved easily. With a SNR of 300, temperature of 1 K accuracy can be measured directly along with the backscatter ratio to a better accuracy of ±1%. Using a large lidar system and assuming 50-km visibility, the proposed technique can be applied to measure backscatter ratio and temperature profiles simultaneously for a 10-km path with 30-m depth resolution in 3 min. With higher SNR the atmospheric pressure profile can also be determined.

© 1983 Optical Society of America

Full Article  |  PDF Article
More Like This
Atmospheric temperature measurement by a high spectral resolution lidar

Hiroshi Shimizu, Kazuo Noguchi, and Chiao-Yao She
Appl. Opt. 25(9) 1460-1466 (1986)

High-Spectral-Resolution Lidar with Iodine-Vapor Filters: Measurement of Atmospheric-State and Aerosol Profiles

John W. Hair, Loren M. Caldwell, David A. Krueger, and Chiao-Yao She
Appl. Opt. 40(30) 5280-5294 (2001)

Effects of auxiliary atmospheric state parameters on the aerosol optical properties retrieval errors of high-spectral-resolution lidar

Yupeng Zhang, Dong Liu, Zhuofan Zheng, Zhengkuan Liu, DeYun Hu, Bing Qi, Chong Liu, Lei Bi, Kejun Zhang, Chunao Wen, Lingying Jiang, Yuling Liu, Ju Ke, and Zhongming Zang
Appl. Opt. 57(10) 2627-2637 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved