Skip to main content

Introduction to Polymerase Chain Reaction

  • Protocol
Neurodegeneration Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 22))

  • 718 Accesses

Abstract

The polymerase chain reaction (PCR) has become an indispensable tool of molecular biology (15). Since its discovery in 1985 the process has found its integration into all research areas involving the use of DNA and RNA. Using this technique, a small starting sample of DNA or RNA can be used to amplify a specific DNA or RNA target over a million-fold in as little as 2 h. This allows for the detection of as little as a single copy of a gene or part of a gene in cells, whether they be from blood, cultured cells, tissue biopsies, chromosomes, or any other biological system that contains DNA or RNA, including archival materials (formalin-fixed, paraffin-embedded).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higuchi, R. (1989) Principles and Applications for DNA Amplification. Stockton Press, London, UK, pp. 31–38.

    Google Scholar 

  2. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds. (1990) PCR Protocols: A Guide to Methods and Applications. Academic, San Diego, CA.

    Google Scholar 

  3. Mullis, K. S. and Faloona, F. A. (1987) Methods Enzymology 155, 335–350.

    Article  CAS  Google Scholar 

  4. Saiki, R. K., et al. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  5. Freifelder, D., ed. (1982) Physical Biochemistry: Applications to Biochemistry & Molecular Biology. Freeman, CA, pp. 494–536.

    Google Scholar 

  6. Kosel, S. and Graeber, M. B. (1994) Use of neuropathological tissue for molecular genetic studies: parameters affecting DNA extraction and polymerase chain reaction. Acta Neuropathol. 88, 19–25.

    Article  PubMed  CAS  Google Scholar 

  7. Saldanha, J., et al. (1984) An improved method for preparing DNA from human brain. J. Neurosci. Methods 11, 275–279.

    Article  PubMed  CAS  Google Scholar 

  8. Savioz, J., et al. (1993) A method for the extraction of genomic DNA from human brain tissue fixed and stored in formalin for many years. Acta Neuropathol. 93, 408–413.

    Article  Google Scholar 

  9. Lawyer, F. C, et al. (1989) Isolation, characterization, and expression of Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J. Biol. Chem. 264,6427–6437.

    PubMed  CAS  Google Scholar 

  10. PE Applied Biosystems PCR Catalog. PE Applied Biosystems, Foster City, CA.

    Google Scholar 

  11. Dieffenbach, C, et al. (1993) Setting up a PCR laboratory. PCR Methods Applications 3, S2–S7.

    CAS  Google Scholar 

  12. GeneAmp® PCR Reagent Kit Protocol. PE Applied Biosystems, Foster City, CA.

    Google Scholar 

  13. Abramson, R. D. and Myers, T. W. (1993) Nucleic acid amplification technologies. Curr. Opin. Biotechnol. 4, 41–47.

    Article  PubMed  CAS  Google Scholar 

  14. Rychlik, W., et al. (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 18, 6409–6412.

    Article  PubMed  CAS  Google Scholar 

  15. Kebelman, C, et al. (1998) Advantages of a new Taq DNA polymerase in multi-plex PCR and time-release PCR. Biotechniques 24, 154–158.

    Google Scholar 

  16. Motlik, J., et al. (1998) Automated reporting of RNA differential display patterns from pig granulosa cells. Biotechniques 24, 148–153.

    PubMed  CAS  Google Scholar 

  17. Cone, R. W. and Fairfax, M. R. (1993) Protocol of ultraviolet irradiation of surfaces to reduce PCR contamination. PCR Methods Applications 3, S15–S17.

    CAS  Google Scholar 

  18. Sambrook, J., et al. (1989) Molecular Cloning, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  19. Dieffenbach, C, et al. (1993) General concepts of PCR design. PCR Methods Applications 3, S30–S37.

    CAS  Google Scholar 

  20. Zimmerman, K. and Mannhalter, J. (1998) Comparison sensitivity and specificity of nested PCR and single-stage PCR using a thermally activated DNA polymerase. Biotechniques 24, 222–224.

    Google Scholar 

  21. Saiki, R. K., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA Polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  22. Hartley, J. A., et al. (1993) Handling reagents in the PCR laboratory. PCR Methods Applications 3, S10–S14.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Miller, M.C., Cunningham, L. (1999). Introduction to Polymerase Chain Reaction. In: Harry, J., Tilson, H.A. (eds) Neurodegeneration Methods and Protocols. Methods in Molecular Medicine™, vol 22. Humana Press. https://doi.org/10.1385/0-89603-612-X:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-612-X:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-612-3

  • Online ISBN: 978-1-59259-604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics