Skip to main content

Oligonucleotides as Inhibitors of Protein Synthesis

  • Protocol
Neurotrophin Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 169))

  • 372 Accesses

Abstract

Duplex formation between an oligonucleotide and a strand of mRNA can effectively inhibit the expression of a specific gene via interfering with the cellular protein synthesis process. The antisense technology (1) is regarded as a powerful tool in molecular biology. Advances in the field have also led to the development of many pharmaceutical/therapeutic applications, with a number of oligonucleotides undergoing human clinical trials at present (2). Making the best use of this approach requires a good understanding of the subject, careful planning, a knowledge of limitations and pitfalls, and a capacity to go beyond the basic antisense techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner, R. W. (1994) Gene inhibition using antisense oligonucleotides. Nature 372, 333–335.

    Article  PubMed  CAS  Google Scholar 

  2. Akhtar, S. and Agrawal, S. (1997) In vivo studies with antisense oligonucleotides. Trends Pharmaceut. Sci. 18, 12–18.

    Article  CAS  Google Scholar 

  3. Hallbook, F., Sahlen, A., and Catsicas, S. (1997) Characterization and evaluation of NGF antisense oligonucleotides: inhibition of NGF synthesis in transfected COS cells. Antisense Nucleic Acid Drug Dev. 7, 89–100.

    Article  PubMed  CAS  Google Scholar 

  4. Staeker, H., Van de Water, T. R., Lefebvre, P. P., Liu, W., Moghadassi, M., Galinovic-Schwartz, V., et al. (dy1996) NGF, BDNF and NT-3 play unique roles in the in vitro development and patterning of innervation of the mammalian innerear. Dev. Brain Res. 92, 49–60.

    Article  Google Scholar 

  5. Taglialatela, G., Hibbert, C. J., Hutton, L. A., Werrbach-Perez, K., and Perez-Polo, J. R. (1996) Suppression of p140 (trkA) does not abolish NGF mediated recue of serum free PC12 cells. J. Neurochem. 66, 1826–1835.

    Article  PubMed  CAS  Google Scholar 

  6. Rickman, D. W. and Rickman, C. B. (1996) Suppression of trkB expression by antisense oligonucleotides alters a neuronal phenotype in the rod pathway of developing rat retina. Proc. Natl. Acad. Sci. USA 93, 12,564–12,569.

    Article  PubMed  CAS  Google Scholar 

  7. Barrett, G. L. and Bartlett, P. F. (1994) The p75 growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc. Natl. Acad. Sci. USA 91, 6501–6505.

    Article  PubMed  CAS  Google Scholar 

  8. Stein, C. A. (1996) Exploiting the potential of antisense: beyond phosphorothioate oligodeoxynucleotides. Chem. Biol. 3, 319–323.

    Article  PubMed  CAS  Google Scholar 

  9. Tonkinson, J. L. and Stein, C. A. (1994) Patterns of intracellular compartmentalization,trafficking and acidification of 5’-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucleic Acids Res. 22, 4268–4275.

    Article  PubMed  CAS  Google Scholar 

  10. Still, W. C., Kahn, M., and Mitra, A. (1978) Rapid chromatographic technique for preperative seperations with moderate resolution. J. Org. Chem. 43, 2923–2925.

    Article  CAS  Google Scholar 

  11. Iversen, P. L., Zhu, S., Meyer, A., and Zon, G. (1992) Cellular uptake and subcellular distribution of phosphorothioate oligonucleotides into cultured cells. Antisense Res. Dev. 2, 211–222.

    PubMed  CAS  Google Scholar 

  12. Temsamami, J., Kubert, M., Tang, J., Padmapriya, A., and Agrawal, S. (1994) Cellular uptake of oligoeoxynucleotide phosphorothoates and their analogs. Antisense Res. Dev. 4, 35–42.

    Google Scholar 

  13. Goodchild, J. (1989) Inhibition of gene expression by oligonucleotides, in Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression (Cohen, J. S.,ed.), CRC, Boca Raton, FL, pp. 53–78.

    Google Scholar 

  14. Beaucage, S. L. (1993) Oligodeoxyribonucleotide synthesis: phosphoramidite approach, in Protocols for Oligonucleotides and Analogs (Agrawal, S., ed.), Humana, Totowa, NJ, pp. 233–264.

    Google Scholar 

  15. Iden, C. R., Rieger, R. A., Torres, C., and Martin, L. B. (1996) Application of electrospray ionization mass spectrometry to the analysis of oligodeoxynucleotides, in Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectroscopy (Snyder, A. P., ed.), American Chemical Society, Washington, DC, pp. 281–293.

    Chapter  Google Scholar 

  16. Donnis-Keller, H. (1979) Site specific enzymatic cleavage of RNA. Nucleic Acid Res. 7, 179–189.

    Article  Google Scholar 

  17. Agrawal, S., Jiang, Z., Zhoa, Q., Shaw, D., Cai, Q., Roskey, A., et al. (dy1997) Mixed-backbone oligonucleotides as second generation antisense oligonucleotides:in vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 94, 2620–2625.

    Article  PubMed  CAS  Google Scholar 

  18. Dean, N. M. and Griffey, R. H. (1997) Identification and characterization of second generation antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 7, 229–233.

    Article  PubMed  CAS  Google Scholar 

  19. Leonetti, J-P., Degols, G., and Lableu, B. (1990), Biological activity of oligonucleotide-poly (l) lysine conjugates: mechanism of cell uptake. Bioconjugate Chem. 1, 149–153.

    Article  CAS  Google Scholar 

  20. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (dy1989) Lipofection: a highly efficient lipid mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  Google Scholar 

  21. Van der Woude, I., Wagennar, A., Meekel, A. A. P., ter Beest, M. B. A., Ruiters, M. H. J., Engberts, J. B. F. N., et al. (dy1997) Novel pyridinium surfactants for efficient nontoxic in vitro gene delivery. Proc. Natl. Acad. Sci. USA 94, 1160–1165.

    Article  PubMed  Google Scholar 

  22. MacKellar, C., Graham, D., Will, D. W., Burgess, S., and Brown, T. (1992) Synthesis and physical properties of anti-HIV antisense oligonucleotides bearing terminal lipophilic groups. Nucleic Acids Res. 20, 3411–3417.

    Article  PubMed  CAS  Google Scholar 

  23. Gryzanov, S. M. and Lloyd, D. H. (1993) Modulation of oligonucleotide duplex and triplex stability via hydrophobic interactions. Nucleic Acids Res. 21, 5909–5915.

    Article  Google Scholar 

  24. Atkinson, T. and Smith, M. (1984) Solid-phase synthesis of oligodeoxynucleotides by the phosphite triester method, in Oligonucleotide Synthesis:A Practical Approach (Gait, M. J., ed.), IRL, Oxford, pp. 35–81.

    Google Scholar 

  25. Zhao, Q., Temsamani, J., and Agrawal, S. (1995) Use of cyclodextrin and its derivatives as carriers for oligonucleotide delivery. Antisense Res. Dev. 5, 185–192.

    PubMed  CAS  Google Scholar 

  26. Habus, I., Zhao, Q., and Agrawal, S. (1995) Synthesis, hybridization properties nuclease stability and cellular uptake of the oligonucleotide-amino-β-cyclodextrins and adamantane conjugates. Bioconjugate Chem. 6, 327–331.

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 7.39.

    Google Scholar 

  28. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 3, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 18.60.

    Google Scholar 

  29. Stephenson, M. L. and Zamecnik, P. C. (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75, 285–288.

    Article  PubMed  CAS  Google Scholar 

  30. Leonetti, J. P., Rayner, B., Lemaitre, M., Gagnor, C., Milhaud, P. G., Imbach, J-L., et al. (dy1988) Antiviral activity of conjugates between poly(L-lysine) and synthetic oligodeoxyribonucleotides. Gene 72, 323–332.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Epa, W.R., Barrett, G.L., Bartlett, P.F. (2001). Oligonucleotides as Inhibitors of Protein Synthesis. In: Rush, R.A. (eds) Neurotrophin Protocols. Methods in Molecular Biology™, vol 169. Humana Press. https://doi.org/10.1385/1-59259-060-8:223

Download citation

  • DOI: https://doi.org/10.1385/1-59259-060-8:223

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-699-4

  • Online ISBN: 978-1-59259-060-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics