Skip to main content

Proteomics as a Functional Genomics Tool

  • Protocol
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 236))

Abstract

To understand the function of all the genes in an organism, one needs to know not only which genes are expressed, when, and where, but also what the protein end products are and under which conditions they accumulate in certain tissues. Proteomics aims at describing the whole protein output of the genome and complements transcriptomic and metabolomic studies. Proteomics depends on extracting, separating, visualizing, identifying, and quantifying the proteins and their interactions present in an organism or tissue at any one time. All of these stages have limitations. Therefore, it is, at present, impossible to describe the whole proteome of any organism. Plants might synthesize many thousands of proteins at one time, and the whole potentially synthesized proteome certainly exceeds the number of estimated genes for that genome. This occurs because the gene products of one gene can differ due to alternative splicing and a variety of possible posttranslational modifications. It is, therefore, essential to optimize every step towards detecting the whole proteome while realizing the limitations. We concentrate here on the most commonly used steps in high-throughput plant proteomics with the techniques we have found most reproducible and with the highest resolution and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godovac-Zimmermann, J. and Brown, L. R. (2001) Perspectives for mass spectrometry and functional proteomics. Mass Spectrom. Rev. 20, 1–57.

    Article  PubMed  CAS  Google Scholar 

  2. Rouquie, D., Peltier, J. B., Marquismansion, M., et al. (eds.) (1997) Proteome Research: New Frontiers in Functional Genomics. Springer, Berlin.

    Google Scholar 

  3. Anderson, L. and Seilhamer, J. (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537.

    Article  PubMed  CAS  Google Scholar 

  4. Battey, N. H., Dickinson, H. G., and Hetherington, A. M. (eds.) (2001) Post-Translational Modifications in Plants. Cambridge University Press, Cambridge.

    Google Scholar 

  5. Guerreiro, N., Ksenzenko, V. N., Djordjevic, M. A., Ivashina, T. V., and Rolfe, B. G. (2000) Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA. J. Bacteriol. 182, 4521–4532.

    Article  PubMed  CAS  Google Scholar 

  6. Jorgensen, R. A., Atkinson, R. G., Forster, R. L. S., and Lucas, W. J. (1998) An RNA-based information superhighway in plants. Science 279, 1486–1487.

    Article  PubMed  CAS  Google Scholar 

  7. Mason, W. T. (ed.) (1999) Fluorescent and Luminescent Probes for Biological Activity. A Practical Guide to Technology for Quantitative Real-Time Analysis. Academic Press, London.

    Google Scholar 

  8. Wouters, F. S., Verveer, P. J., and Bastiaens, P. I. H. (2001) Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211.

    Article  PubMed  CAS  Google Scholar 

  9. Legrain, P., Wojcik, J., and Gauthier, J. M. (2001) Protein-protein interaction maps: a lead towards cellular functions. Trends Genet. 17, 346–352.

    Article  PubMed  CAS  Google Scholar 

  10. Gadella, T. W. J., van der Krogt, G. N. M. and Bisseling, T. (1999) GFP based FRET microscopy in living cells. Trends Cell Biol. 4, 287–291.

    Google Scholar 

  11. Bastiaens, P. I. H. and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52.

    Article  PubMed  CAS  Google Scholar 

  12. Van Wijk, K. J. (2001) Challenges and prospects of plant proteomics. Plant Physiol. 126, 501–508.

    Article  PubMed  Google Scholar 

  13. Link, A. J., Eng, J., Schieltz, D., et al. (1999) Direct analysis of protein complexes by mass spectrometry. Nat. Biotechnol. 17, 676–682.

    Article  PubMed  CAS  Google Scholar 

  14. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  15. Kamo, M., Kawakami, T., Miyatake, N., and Tsugita, A. (1995) Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 16, 423–430.

    Article  PubMed  CAS  Google Scholar 

  16. Mathesius, U., Keijzers, G., Natera, S. H. A., Weinman, J. J., Djordjevic, M. A., and Rolfe, B. G. (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1, 1424–2440.

    Article  PubMed  CAS  Google Scholar 

  17. Imin, N., Kerim, T., Weinman, J. J., and Rolfe, B. G. (2001) Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics 1, 1149–1161.

    Article  PubMed  CAS  Google Scholar 

  18. Rossignol, M. (1997) Construction of a directory of tobacco plasma membrane proteins by combined two-dimensional gel electrophoresis and protein sequencing. Electrophoresis 18, 654–660.

    Article  PubMed  Google Scholar 

  19. Porubleva, L., Vander Velden, K., Kothari, S., Oliver, D. J., and Chitnis, P. R. (2001) The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22, 1724–1738.

    Article  PubMed  CAS  Google Scholar 

  20. Touzet, P., Riccardi, F., Morin, C., et al. (1996) The maize two dimensional gel protein database—towards an integrated genome analysis program. Theor. Appl. Genet. 93, 997–1005.

    Article  CAS  Google Scholar 

  21. Jacobs, D. I., van der Heijden, R., and Verpoorte, R. (2000) Proteomics in plant biotechnology and secondary metabolism research. Phytochem. Anal. 11, 277–287.

    Article  CAS  Google Scholar 

  22. Natera, S. H. A., Guerreiro N., and Djordjevic, M. A. (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol. Plant-Microbe Interact. 13, 995–1009.

    Article  PubMed  CAS  Google Scholar 

  23. Morris, A. C. and Djordjevic, M. A. (2001) Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22, 586–598.

    Article  PubMed  CAS  Google Scholar 

  24. Thiellement, H., Bahrman, N., Damerval, C., et al. (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20, 2013–2026.

    Article  PubMed  CAS  Google Scholar 

  25. Jung, E., Heller, M., Sanchez, J.-C., and Hochstrasser, D. F. (2000) Proteomics meets cell biology: the establishment of subcellular proteomes. Electrophoresis 21, 3369–3377.

    Article  PubMed  CAS  Google Scholar 

  26. Chevallet, M., Santoni, V., Poinas, A., et al. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909.

    Article  PubMed  CAS  Google Scholar 

  27. Görg, A., Boguth, G., Obermaier, C., Posch, A., and Weiss, W. (1995) Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-dalt)—the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16, 1079–1086.

    Article  PubMed  Google Scholar 

  28. Görg, A., Obermaier, C., Boguth, G., et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.

    Article  PubMed  Google Scholar 

  29. Gevaert, K. and Vandekerckhove, J. (2000) Protein identification methods in proteomics. Electrophoresis 21, 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  30. Pappin, D. J. C., Hojrup, P., and Bleasby, A. J. (1993) Rapid identification of protein by peptide mass fingerprinting. Curr. Biol. 3, 327–332.

    Article  PubMed  CAS  Google Scholar 

  31. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5016.

    Article  PubMed  CAS  Google Scholar 

  32. Stancato, L. F. and Petricoin, E. F., III. (2001) Fingerprinting of signal transduction pathways using a combination of anti-phosphotyrosine immunoprecipitations and two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 22, 2120–2124.

    Article  PubMed  CAS  Google Scholar 

  33. Yan, J. X., Packer, N. H., Gooley, A. A., and Williams, K. L. (1998) Protein phosphorylation—technologies for the identification of phosphoamino acids. J. Chromatog. 808, 23–41.

    Article  CAS  Google Scholar 

  34. Steinberg, T. H., Pretty On Top, K., Berggren, K. N., et al. (2001). Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics 1, 841–855.

    Article  PubMed  CAS  Google Scholar 

  35. Tsugita, A., Kiyazaki, K., Nabetami, T., Nozawa, T., Kamo, M., and Kawakami, T. (2001) Application of chemical selective cleavage methods to analyze post-translational modifications in proteins. Proteomics 1, 1082–1091.

    Article  PubMed  CAS  Google Scholar 

  36. Görg, A., Obermaier, C., Boguth, G., Csodas, A., Diaz, J.-J., and Madjar, J.-J. (1997) Very alkaline immobilised pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18, 328–337.

    Article  PubMed  Google Scholar 

  37. Lowry, O. H., Rosebrough, J. N., Farr, A. L., and Randall, R. J. (1951) Protein measurements with the Folin reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  38. Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070.

    Article  PubMed  CAS  Google Scholar 

  39. Molloy, M. (2000) Two-dimensional gel electrophoresis of membrane proteins using immobilized pH gradients. Anal. Biochem. 280, 1–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mathesius, U., Imin, N., Natera, S.H.A., Rolfe, B.G. (2003). Proteomics as a Functional Genomics Tool. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:395

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:395

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics