Skip to main content

Production and Surface Modification of Polylactide-Based Polymeric Scaffolds for Soft-Tissue Engineering

  • Protocol
Book cover Biopolymer Methods in Tissue Engineering

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 238))

Abstract

Current research in the field of tissue engineering is focused on the development of appropriate strategies for repair and regeneration of biological tissues. Biological tissues consist of cells situated within a complex molecular framework known as the extracellular matrix (ECM) with an integrated vascular system for oxygen or nutrient supply. In soft tissues, native ECMs consist mainly of collagens, proteoglycans, glycosaminoglycans (GAGs), laminins, and fibronection (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, B.-S. and Mooney, D. J. (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Tibtech 16, 224–230.

    CAS  Google Scholar 

  2. Lo, H., Ponticiello, M. S., and Leong, K. W. (1995) Fabrication of Controlled Release Biodegradable Foams by Phase Separation. Tissue Engineering 1(1), 15–28.

    CAS  Google Scholar 

  3. Besseau, L., Coulomb, B., Lebreton-Decoster, C., and Giraud-Guille, M.-M. (2002) Production of ordered collagen matrices for three-dimensional cell culture. Biomaterials 23(1), 27–36.

    CAS  Google Scholar 

  4. Heimburg, D. V., Zachariah, S., Heschel, I., Kuhling, H., Schoof, H., Hafemann, B., and Pallua, N. (2001) Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo. Biomaterials 22, 429–438.

    Google Scholar 

  5. Hubbell, J. A. (1995) Biomaterials in tissue engineering. Bio/Technology 13, 565–576.

    CAS  Google Scholar 

  6. Hutmacher, D. W., Goh, J. C. H., and Teoh, S. H. (2001) An introduction to biodegradable materials for tissue engineering applications. Ann. Acad. Med. Singapore 30, 183–191.

    CAS  Google Scholar 

  7. Shen, F., Cui, Y., Yang, L., Yao, K., Dong, X., Jia, W., and Shi, H. (2000) A study on the fabrication of porous chitosan gelatin network scaffold for tissue engineering. Polym. Int. 49, 1596–1599.

    CAS  Google Scholar 

  8. Kosmala, J. D., Henthorn, D. B., and Brannon-Peppas, L. (2000) Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials 21, 2019–2023.

    CAS  Google Scholar 

  9. Taguchi, T., Ikoma, T., and Tanaka, J. (2002) An improved method to prepare hyaluronic acid and type II collagen composite matrices. J. Biomed. Mater. Res. 61, 330–336.

    CAS  Google Scholar 

  10. Mi, F.-L., Ran, Y.-C., Liang, H.-F., and Sung, H.-W. (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23, 181–191.

    CAS  Google Scholar 

  11. Lee, J.-Y., Nam, S.-H., Im, S.-Y., Park, Y.-J., Lee, Y.-M., Seol, Y.-J., et al. (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J. Control. Release 78, 187–197.

    CAS  Google Scholar 

  12. Zhang, Y. and Zhang, M. (2001) Synthesis and characterisation of macroporous chitosan/calsium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res. 55, 304–312.

    CAS  Google Scholar 

  13. VandeVord, P. J., Matthew, H. W. T., DeSilva, S. P., Mayton, L., Wu, B., and Wooley, P. H. (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 59, 585–590.

    CAS  Google Scholar 

  14. Gomes, M. E., Reis, R. L., Cunha, A. M., Blitterswijk, C. A., and Bruijn, J. D. D. (2001) Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials 22, 1911–1917.

    CAS  Google Scholar 

  15. Gomes, M. E., Ribeiro, A. S., Malafaya, P. B., Reis, R. L., and Cunha, A. M. (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 22, 883–889.

    CAS  Google Scholar 

  16. Shapiro, L. and Cohen, S. (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18, 583–590.

    CAS  Google Scholar 

  17. Eiselt, P., Yeh, J., Latvala, R. K., Shea, L. D., and Mooney, D. J. (2000) Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21, 1921–1927.

    CAS  Google Scholar 

  18. Engelberg, I. and Kohn, J. (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12, 292–304.

    CAS  Google Scholar 

  19. Agrawal, C. M. and Ray, R. B. (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55(2), 141–151.

    CAS  Google Scholar 

  20. de Groot, J. H., Nijenhuis, A. J., Bruin, P., Pennings, A. J., Veth, R. P. H., and Klompmaker, J. (1990) Use of porous biodegradable polymer implants in meniscus reconstruction. 1) preparation of porous biodegradable polyurethanes for the reconstruction of meniscus lesions. Colloid. Polym. Sci. 268, 1073–1081.

    Google Scholar 

  21. Spaans, C. J., Belgraver, V. W., Rienstra, O., Groot, J. H. D., Veth, R. P. H., and Pennings, A. J. (2000) Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials 21, 2453–2460.

    CAS  Google Scholar 

  22. Roman, J. S., Gallardo, A., Elvira, C., Vazquez, B., Lopez-Bravo, A., Pedro, J. A. D., et al. (2001) Contribution of polymeric supports to the development of tissue engineering. Macromol. Symp. 168, 75–89.

    Google Scholar 

  23. Freed, L. E., Vunjak-Novakovic, G., Biron, R. J., Eagles, D. B., Lesnoy, D. C., Barlow, S. K., et al. (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12, 689–693.

    CAS  Google Scholar 

  24. Mikos, A. G., Bao, Y., Cima, L. G., Ingber, D. E., Vacati, J. P., and Langer, R. (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27, 183–189.

    CAS  Google Scholar 

  25. Mooney, D. J., Mazzoni, C. L., Breuer, C., McNamara, K., Hern, D., Vacanti, J. P., et al. (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17, 115–124.

    CAS  Google Scholar 

  26. Cassell, O., Morrison, W., Messina, A., Penington, A., Thompson, E., Stevens, G., et al. (2001) The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann. NY Acad. Sci. 944, 429–442.

    CAS  Google Scholar 

  27. Dunn, R. L., English, J. P., and Cowsar, D. R. (1990) Biodegradable in-situ forming implants and methods of producing the same, US Patent, US 4,938,763.

    Google Scholar 

  28. Elema, H., Groot, J. H. D., Nijenhuis, A. J., Pennings, A. J., Veth, R. P. H., Klomopmaker, J., et al. (1990) Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid. Polym. Sci. 268, 1082–1088.

    CAS  Google Scholar 

  29. Lo, H., Kadiyala, S., Guggino, S. E., and Leong, K. W. (1996) Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J. Biomed. Mater. Res. 30, 475–484.

    CAS  Google Scholar 

  30. Maquet, V., Martin, D., Malgrange, B., Franzen, R., Schoenen, J., Moonen, G., et al. (2000) Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. J. Biomed. Mater. Res. 52, 639–651.

    CAS  Google Scholar 

  31. Schugens, C., Grandfils, C., Jerome, R., Teyssie, P., Delree, P., Martin, D., et al. (1995) Preparation of a macroporous biodegradable polylactide implant for neuronal transplantation. J. Biomed. Mater. Res. 29, 1349–1362.

    CAS  Google Scholar 

  32. Schugens, C., Maquet, V., Grandfils, C., Jerome, R., and Teyssie, P. (1996) Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J. Biomed. Mater. Res. 30, 449–461.

    CAS  Google Scholar 

  33. Schugens, C., Maquet, V., Grandfils, C., Jerome, R., and Teyssie, P. (1996) Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation. Polymer 37(6), 1027–1038.

    CAS  Google Scholar 

  34. Singhal, A. R., Agrawal, C. M., and Athanasiou, K. A. (1996) Salient degradation features of a 50, 50 PLA/PGA scaffold for tissue engineering. Tissue Engineering 2(3), 207.

    Google Scholar 

  35. Holy, C. E., Shoichet, M. S., and Davies, J. E. (1998) Bone ingrowth on a novel PLGA 75/25 foam, in Proceedings of 24th Annual Meeting of the Society for Biomaterials. San Diego, CA.

    Google Scholar 

  36. Eliaz, R. E. and Kost, J. (2000) Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J. Biomed. Mater. Res. 50, 388–396.

    CAS  Google Scholar 

  37. Hile, D. D., Amirpour, M. L., Akgerman, A., and Pishko, M. V. (2000) Active growth factor delivery from poly(D,L-lactide-co-glycolide) foams prepared in supercritical CO2. J. Control. Release 66, 177–185.

    CAS  Google Scholar 

  38. Hasirci, V., Berthiaume, F., Bondre, S. P., Gresser, J. D., Trantolo, D. J., Toner, M., et al. (2001) Expression of liver-specific functions by rat hepatocytes seeded in treated poly(lactic-co-glycolic)acid biodegradable foams. Tissue Engineering 7(4), 385–394.

    CAS  Google Scholar 

  39. Patrick, C. W., Jr., Zheng, B., Johnston, C., and Reece, G. P. (2002) Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Engineering 8(2), 283–293.

    CAS  Google Scholar 

  40. Borden, M., Attawia, M., Khan, Y., and Laurencin, C. T. (2002) Tissue engineered microscope-based matrices for bone repair: a design and evaluation. Biomaterials 23(2), 551–559.

    CAS  Google Scholar 

  41. Hutmacher, D. W. (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J. Biomater. Sci. Polym. Edn. 12(1), 107–124.

    CAS  Google Scholar 

  42. Yang, S., Leong, K.-F., Du, Z., and Chua, C.-K. (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering 7(6), 679–689.

    CAS  Google Scholar 

  43. Ikada, Y. and Tsuji, H. (2000) Biodegradable polyesters for medical and ecological applications. Macromol. Rapid. Commun. 21, 117–132.

    CAS  Google Scholar 

  44. Corden, T. J., Jones, I. A., Rudd, C. D., Christian, P., Downes, S., and McDougall, K. E. (2000) Physical and biocompatibility properties of poly-E-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fiber composite materials. Biomaterials 21, 713–724.

    CAS  Google Scholar 

  45. Zein, I., Hutmacher, D. W., Tan, K. C., and Teoh, S. H. (2002) Fused deposition modelling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185.

    CAS  Google Scholar 

  46. Tienen, T. G.v., Heijkants, R. G. J. C., Buma, P., de Groot, J. H., Pennings, A. J., and Veth, R. P. H. (2002) Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 23, 1731–1738.

    Google Scholar 

  47. Mikos, A. G., Bao, Y., Cima, L. G., Ingber, D. E., Vacanti, J. P., and Langer, R. (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27, 183–189.

    CAS  Google Scholar 

  48. Kim, W. S., Vacanti, J. P., Cima, L., Mooney, D., Upton, J., Puelacher, W. C., et al. (1994) Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast. Reconstr. Surg. 94, 233–237.

    CAS  Google Scholar 

  49. Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., and Langer, R. (1994) Preparation and characterization of poly (L-lactic acid) foams. Polymer 35(5), 1068–1077.

    CAS  Google Scholar 

  50. Freed, L. E., Marquis, J. C., Nohria, A., Emmanual, J., Mikos, A. G., and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27, 11–23.

    CAS  Google Scholar 

  51. Wake, M. C., Gupta, P. K., and Mikos, A. G. (1996) Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant. 5(4), 465–473.

    CAS  Google Scholar 

  52. Whang, K., Thomas, C. H., and Healy, K. E. (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36(4), 837–842.

    CAS  Google Scholar 

  53. Patrick, C. W., Chauvin, P. B., Hobley, J., and Reece, G. P. (1999) Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Engineering 5(2), 139–151.

    CAS  Google Scholar 

  54. Thomson, R. C., Yaszemski, M. J., Powers, J. M., and Mikos, A. G. (1998) Hydroxy fiber reinforced poly(a-hydroxy ester) foams for bone regeneration. Biomaterials 19, 1935–1943.

    CAS  Google Scholar 

  55. Ma, P. X. and Choi, J.-W. (2001) Biodegradable polymer scaffolds with well defined interconnected spherical pore network. Tissue Engineering 7(1), 23–33.

    CAS  Google Scholar 

  56. Murphy, W. L., Dennis, R. G., Kileny, J. L., and Mooney, D. J. (2002) Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Engineering 8(1), 43–52.

    CAS  Google Scholar 

  57. Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P., and Langer, R. (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14(5), 323–330.

    CAS  Google Scholar 

  58. Wake, M. C., Patrick, C. W., and Mikos, A. G. (1994) Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 3(4), 339–343.

    CAS  Google Scholar 

  59. Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P., and Langer, R. (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14(5), 323–330.

    CAS  Google Scholar 

  60. Liao, C.-J., Chen, C.-F., Chen, J.-H., Chiang, S.-F., Lin, Y.-J., and Chang, K.-Y. (2002) Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J. Biomed. Mater. Res. 59, 676–681.

    CAS  Google Scholar 

  61. Schmitz, J. P. and Hollinger, J. O. (1988) A preliminary study of the osteogenic potential of a biodegradaClin. Orthop. Relat. Res.ble alloplastic osteoinductive alloimplant. Clin. Orthop. Relat. Res. 237, 245–255.

    Google Scholar 

  62. Athanasiou, K. A., Singhal, A. R., Agrawal, C. M., and Boyan, B. D. (1995) In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor. Clin. Orthop. Relat. Res. 315, 272–281.

    Google Scholar 

  63. Coombes, A. G. A. and Heckman, J. D. (1992) Gel casting of resorbable polymers 1. Processing and applications. Biomaterials 13(4), 217–224.

    CAS  Google Scholar 

  64. Coombes, A. G. A. and Heckman, J. D. (1992) Gel casting of resorbable polymers 2. In-vitro degradation of bone graft substitutes. Biomaterials 13(5), 297–307.

    CAS  Google Scholar 

  65. Nam, Y. S. and Park, T. G. (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47, 8–17.

    CAS  Google Scholar 

  66. Nam, Y. S. and Park, T. G. (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20, 1783–1790.

    CAS  Google Scholar 

  67. Hu, Y., Grainger, D. W., Winn, S. R., and Hollinger, J. O. (2002) Fabrication of poly(a-hydroxy acid) foam scaffolds using multiple solvent systems. J. Biomed. Mater. Res. 59, 563–572.

    CAS  Google Scholar 

  68. Hua, F. J., Kim, G. E., Lee, J. D., Son, Y. K., and Lee, D. S. (2002) Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid-liquid phase separation of a PLLA-dioxane-water system. J. Biomed. Mater. Res. 63, 161–167.

    CAS  Google Scholar 

  69. Ma, P. X., Zhang, R., Xiao, G., and Franceschi, R. (2001) Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res. 54, 284–293.

    CAS  Google Scholar 

  70. Zhang, R. and Ma, P. X. (1999) Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res. 44, 446–455.

    CAS  Google Scholar 

  71. Whang, K., Goldstick, T. K., and Healy, K. E. (2000) A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 21, 2545–2551.

    CAS  Google Scholar 

  72. Hsu, Y.-Y., Gresser, J. D., Trantolo, D. J., Lyons, C. M., Gangadharam, P. R. J., and Wise, D. L. (1997) Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compresses foam matrices. J. Biomed. Mater. Res. 35, 107–116.

    CAS  Google Scholar 

  73. Ma, P. X. and Zhang, R. (2001) Microtubular architechture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56, 469–477.

    CAS  Google Scholar 

  74. Ma, P. X. and Zhang, R. (1999) Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46, 60–72.

    CAS  Google Scholar 

  75. Zhang, R. and Ma, P. X. (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J. Biomed. Mater. Res. 52, 430–438.

    CAS  Google Scholar 

  76. Zmora, S., Glicklis, R., and Cohen, S. (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials In press.

    Google Scholar 

  77. Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., and Langer, R. (1996) Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14), 1417–1422.

    CAS  Google Scholar 

  78. Holy, C. E., Dang, S. M., Davies, J. E., and Shoichet, M. S. (1999) In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 20, 1177–1185.

    CAS  Google Scholar 

  79. Sheridan, M. H., Shea, L. D., Peters, M. C., and Mooney, D. J. (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control. Release 64, 91–102.

    CAS  Google Scholar 

  80. Maspero, F. A., Ruffieux, K., Muller, B., and Wintermantel, E. (2002) Resorbable defect analog PLGA scaffolds using CO2 as solvent: structural characterization. J. Biomed. Mater. Res. 62, 89–98.

    CAS  Google Scholar 

  81. Harris, L. D., Kim, B.-S., and Mooney, D. J. (1998) Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42, 396–402.

    CAS  Google Scholar 

  82. Nam, Y. S., Yoon, J. J., and Park, T. G. (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. (Appl Biomater) 53, 1–7.

    CAS  Google Scholar 

  83. Yoon, J. J. and Park, T. G. (2001) Degradation behaviours of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J. Biomed. Mater. Res. 55, 401–408.

    CAS  Google Scholar 

  84. Agrawal, C. M., Mckinney, J. S., Huang, D., and Athanasiou, S. A. (2000) The use of the vibrating particle technique to fabricate highly permeable biodegradable scaffolds, in Synthetic Biosorbable Polymers for Implants (Agrawal, C. M., Parr, J., and Lin, S., eds.), American Society for testing and materials, Philadelphia, PA.

    Google Scholar 

  85. Zhang, R. and Ma, P. X. (1999) Porous poly(L-Lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. 45, 285–293.

    CAS  Google Scholar 

  86. Bigi, A., Boanini, E., Panzavolta, S., Roveri, N., and Rubini, K. (2002) Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J. Biomed. Mater. Res. 59, 709–714.

    CAS  Google Scholar 

  87. Washburn, N. R., Simon, C. G., Elgendy, H. M., Karim, A., and Amis, E. J. (2002) Co-extrusion of biocompatible polymers for scaffolds with co-continuous morphology. J. Biomed. Mater. Res. 60, 20–29.

    CAS  Google Scholar 

  88. Park, A., Wu, B., and Griffith, L. G. (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhision. J. Biomater. Sci. Polym. Edn. 9(2), 89–110.

    CAS  Google Scholar 

  89. Giordano, R. A., Wu, B. M., Borland, S. W., Cima, L. G., Sachs, E. M., and Cima, M. J. (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polymer Edn. 8(1), 63–75.

    CAS  Google Scholar 

  90. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., and Tan, K. C. (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55, 203–216.

    CAS  Google Scholar 

  91. Terada, S., Sato, M., Sevy, A., and Vacanti, J. P. (2000) Tissue engineering in the twenty-first century. Yonsei Med. J. 41(6), 685–691.

    CAS  Google Scholar 

  92. Salem, A. K., Stevens, R., Pearson, R. G., Davies, M. C., Tendler, S. J. B., Roberts, C. J., et al. (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res. 61, 212–217.

    CAS  Google Scholar 

  93. Mikos, A. G., Sarakinos, G., Lyman, M. D., Ingber, D. E., Vacanti, J. P., and Langer, R. (1993) Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42, 716–723.

    CAS  Google Scholar 

  94. Chen, G., Ushida, T., and Tateishi, T. (2001) Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolide acid) foams by use of ice microparticulates. Biomaterials 22, 2563–2567.

    CAS  Google Scholar 

  95. Hofer, S. O. P., Knight, K. M., Cooper-White, J. J., O’Connor, A. J., Perera, J. M., Stevens, G. W., et al. (2002) Increasing the volume of vascularized tissue formation in engineering constructs—An experimental study in rats. Plast. Reconstr. Surg. 111(3), 1186–1192.

    Google Scholar 

  96. Lloyd, D. R., Kinzer, K. E., and Tseng, H. S. (1990) Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J. Membrane Sci. 52, 239–261.

    CAS  Google Scholar 

  97. Blacher, S., Maquet, V., Pirard, R., Pirard, J.-P., and Jerome, R. (2001) Image analysis, impedance spectroscopy and mercury porosimetry characterisation of freeze-drying porous materials. Colloids Surf. A Physicochem. Eng. Asp 187–188, 375–383.

    Google Scholar 

  98. Cao, Y., Cooper-White, J. J., O’Connor, A. J., and Stevens, G. W. 3D Poly(lactic-co-glycolic acid) scaffolds for soft tissue engineering, in Proceedings of 12th Annual Conference of the Australian Society for Biomaterials, March 2002, Canberra, Australia.

    Google Scholar 

  99. Cao, Y., Cooper-White, J. J., O’Connor, A. J., Stevens, G. W., and Davidson, M. R. (2003) Controlling macroporous architecture of three dimensional poly(d,l-lactic-co-glycolic) acid scaffolds for tissue engineering. In preparation.

    Google Scholar 

  100. Holy, C. E. and Yakubovich, R. (2000) Processing cell-seeded polyester scaffolds for histology. J. Biomed. Mater. Res. 50, 276–279.

    CAS  Google Scholar 

  101. Maquet, V., Blacher, S., Pirard, R., Pirard, J.-P., and Jerome, R. (2000) Characterization of porous polylactide foams by image analysis and impedance spectroscopy. Langmuir 16, 10463–10470.

    CAS  Google Scholar 

  102. Yang, J., Shi, G., Bei, J., Wang, S., Cao, Y., Shang, Q., et al. (2002) Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J. Biomed. Mater. Res. 62, 438–446.

    CAS  Google Scholar 

  103. Cao, Y., Cooper-White, J. J., O’Connor, A. J., and Stevens, G. W. (2003) The influence of morphology on degradation and vascularisation of three dimensional poly(D,L-lactic-co-glycolic) scaffolds in vitro and in vivo. In preparation.

    Google Scholar 

  104. Khang, G., Lee, S. J., Jeon, J. H., Lee, J. H., and Lee, H. B. (2000) Interaction of Fibroblast Cell onto physicochemically treated PLGA surfaces. Polym. Korea 24(6), 869–876.

    CAS  Google Scholar 

  105. Tjia, J. S., Aneskievich, B. J., and Moghe, P. V. (1999) Substrate-adsorbed collagen and cell secreted fibronectin concertedly induce cell migration on poly(lactide-glycolide) substrates. Biomaterials 20, 2223–2233.

    CAS  Google Scholar 

  106. Yang, J., Bei, J., and Wang, S. (2002) Enhanced cell affinity of poly (D,L-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23, 2607–2614.

    CAS  Google Scholar 

  107. De Bartolo, L., Morelli, S., Bader, A., and Drioli, E. (2002) Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials 23(12), 2485–2497.

    Google Scholar 

  108. Groth, T., Seifert, B., Malsch, G., Albrecht, W., Paul, D., Kostadinova, A., et al. (2002) Interaction of human skin fibroblasts with moderate wettable polyacry-lonitrile-copolymer membranes. J. Biomed. Mater. Res. 61(2), 290–300.

    CAS  Google Scholar 

  109. Yang, J., Bei, J., and Wang, S. (2002) Improving cell affinity of poly(D,L-lactide) Film modified by anhydrous ammonia plasma treatment. Polym. Adv. Technol. 13, 220–226.

    CAS  Google Scholar 

  110. Chu, P. K., Chen, J. Y., Wang, L. P., and Huang, N. (2002) Plasma-surface modification of biomaterials. Mater. Sci. Eng. R. 36, 143–206.

    Google Scholar 

  111. Cai, K. Y., Yao, K. D., Cui, Y. L., Yang, Z. M., Li, X. Q., Xie, H. Q., et al. (2002) Influence of different surface modification treatments on poly(D,L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro. Biomaterials 23(7), 1603–1611.

    CAS  Google Scholar 

  112. Quirk, R. A., Davies, M. C., Tendler, S. J. B., and Shakesheff, K. M. (2000) Surface engineering of poly(lactic acid) by entrapment of modifying species. Macromolecules 33, 258–260.

    CAS  Google Scholar 

  113. Quirk, R. A., Davies, M. C., Tendler, S. J. B., Chan, W. C., and Shakesheff, K. M. (2001) Controlling biological interactions with poly(lactic acid) by surface entrapment modification. Langmuir 17, 2817–2820.

    CAS  Google Scholar 

  114. Nam, Y. S., Yoon, J. J., Lee, J. G., and Park, T. G. (1999) Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modified by alkali hydrolysis process. J. Biomat. Sci. Polym. E. 10(11), 1145–1158.

    CAS  Google Scholar 

  115. Croll, T. I., Cooper-White, J. J., O’Connor, A. J., and Stevens, G. W., (2003) Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydralysis or aminolysis. I. Physical, chemical and theoretical aspects. In preparation.

    Google Scholar 

  116. Khang, G., Choee, J. H., Rhee, J. M., and Lee, H. B. (2002) Interaction of different types of cells on physicochemically treated poly(L-lactide-co-glycolide) surfaces. J. Appl. Polym. Sci. 85(6), 1253–1262.

    CAS  Google Scholar 

  117. Good, R. J. (1993) Contact angle, wetting and adhesion: a critical review, in Contact Angle, Wettability and Adhesion: Festschrift in honor of Professor Robert J. Good (Mittal, K. L., ed.), VSP BV: Utrecht. pp. 1–36.

    Google Scholar 

  118. Vargha-Butler, E. I., Kiss, E., Lam, C. N. C., Keresztes, Z., Kalman, E., Zhang, L., et al. (2001) Wettability of biodegradable surfaces. Colloid. Polym. Sci. 279(12), 1160–1168.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Cao, Y., Croll, T.I., Cooper-White, J.J., O’ Connor, A.J., Stevens, G.W. (2004). Production and Surface Modification of Polylactide-Based Polymeric Scaffolds for Soft-Tissue Engineering. In: Hollander, A.P., Hatton, P.V. (eds) Biopolymer Methods in Tissue Engineering. Methods in Molecular Biology™, vol 238. Humana Press. https://doi.org/10.1385/1-59259-428-X:87

Download citation

  • DOI: https://doi.org/10.1385/1-59259-428-X:87

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-967-4

  • Online ISBN: 978-1-59259-428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics