Skip to main content

Modeling Pancreatic Cancer in Animals to Address Specific Hypotheses

  • Protocol
Pancreatic Cancer

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 103))

Abstract

Multiple experimental approaches have been employed to study exocrine pancreatic cancer, including the use of animals as surrogates for the human disease. Animals have the advantage that they can be manipulated to address specific hypotheses regarding mechanisms underlying this disease. Implicit in this opportunity is the necessity to match the question being asked with an appropriate animal model. Several approaches to modeling pancreatic cancer have been established that involve animals. First, xenogeneic cell transplantation, generally into immunocompromised rodent subcutis or pancreas, allows examination of (1) the effect of host environment on human or rodent pancreatic cancer cells, (2) whether specific genetic changes in donor cells correlate with certain cancer cell behaviors, and (3) novel approaches to cancer therapy or imaging of tumor growth. Second, carcinogen administration, typically to hamster or rat, allows examination of whether specific genetic, biochemical, cellular, and tissue phenotypic changes, including progression to neoplasia, accompany exposure to a particular chemical. Third, genetically engineered animals, usually transgenic or gene targeted mice, allow examination of (1) whether genetic changes, including oncogene overexpression/mutation or tumor suppressor gene loss, can increase the risk for neoplastic progression, (2) whether specific genetic changes can cooperate during pancreatic carcinogenesis, and (3) how the genetic signature of a neoplasm correlates with particular biological aspects of tumor initiation and progression. Collectively, these experimental approaches permit detailed exploration of pancreatic cancer genetics and biology in the whole animal context, thereby mimicking the environment in which human disease occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sohn, T. A. (2002) The molecular genetics of pancreatic ductal carcinoma. Minerva Chir. 57, 561ā€“574.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Parker, S., Tong, T., Bolden, S., et. al. (1996) Cancer Statistics. CA J. Clin. 65, 5ā€“27.

    ArticleĀ  Google ScholarĀ 

  3. Sakorafas, G. H. and Tsiotou, A. G. (1999) Multi-step pancreatic carcinogenesis and its clinical implications. Eur. J. Surg. Oncol. 25, 562ā€“565.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Hilgers, W. and Kern, S. E. (1999) Molecular genetic basis of pancreatic adenocarcinoma. Genes Chromosom. Cancer 26, 1ā€“12.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Caldas, C. and Kern, S. E. (1995) K-ras mutation and pancreatic adenocarcinoma. Int. J. Pancreatol. 18, 1ā€“6.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Gunji, N., Oda, T., Todoroki, T., et al. (1998) Pancreatic carcinoma: Correlation between E-cadherin and alpha-catenin expression status and liver metastasis. Cancer 82, 1649ā€“1656.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Visser, C. J., Bruggink, A. H., Korc, M., et al. (1996) Overexpression of transforming growth factor-alpha and epidermal growth factor receptor, but not epidermal growth factor, in exocrine pancreatic tumours in hamsters. Carcinogenesis 17, 779ā€“785.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Hruban, R. H. W. and Kern, S. E. (2000) Genetic progression in the pancreatic ducts. Am. J. Pathol. 156, 1821ā€“1825.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Mangray, S. and King, T. C. (1998) Molecular pathobiology of pancreatic adenocarcinoma. Front. Biosci. 3, D1148ā€“1160.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Perugini, R. A., McDade, T. P., Vittimberga, F. J. Jr., and Callery, M. P. (1998) The molecular and cellular biology of pancreatic cancer. Crit. Rev. Eukaryot. Gene Express. 8, 377ā€“393.

    CASĀ  Google ScholarĀ 

  11. Goggins, M., Kern, S. E., Offerhaus, J. A., and Hruban, R. H. (1999) Progress in cancer genetics: Lessons from pancreatic cancer. Ann. Oncol. 10, 4ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  12. Kumar, V., Bustin, S. A., and McKay, I. A. (1995) Transforming growth factor alpha. Cell Biol. Int. 19, 373ā€“388.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Sakorafas, G. H., Tsiotou, A. G., and Tsiotos, G. G. (2000) Molecular biology of pancreatic cancer; oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat. Rev. 26, 29ā€“52.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Moore, P. S., Sipos, B., Orlandini, S., et al. (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch. 439, 798ā€“802.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Aoki, K., Yoshida, T., Matsumoto, N., Ide, H., Sugimura, T., and Terada, M. (1997) Suppression of Ki-ras p21 levels leading to growth inhibition of pancreatic cancer cell lines with Ki-ras mutation but not those without Ki-ras mutation. Mol. Carcinog. 20, 251ā€“258.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Kita, K., Saito, S., Morioka, C. Y., and Watanabe, A. (1999) Growth inhibition of human pancreatic cancer cell lines by anti-sense oligonucleotides specific to mutated K-ras genes. Int. J. Cancer 80, 553ā€“558.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Hahn, S. A., Seymour, A. B., Hoque, A. T., et al. (1995) Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res. 55, 4670ā€“4675.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Capella, G., Farre, L., Villanueva, A., et al. (1999) Orthotopic models of human pancreatic cancer. Ann. NY Acad. Sci. 880, 103ā€“109.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Schwarz, R. E., McCarty, T. M., Peralta, E. A., Diamond, D. J., and Ellenhorn, J. D. (1999) An orthotopic in vivo model of human pancreatic cancer. Surgery 126, 562ā€“567.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Gingell, R., Wallcave, L., Nagel, D., Kupper, R., and Pour, P. (1976) Metabolism of the pancreatic carcinogens N-nitroso-bis-(2-oxopropyl)amine and N-nitroso-bis (2-hydroxypropyl)amine in the Syrian hamster. J. Natl. Cancer Inst. 57, 1175ā€“1178.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Pour, P. and Althoff, J. (1977) The effect of N-nitrosobis(2-oxopropyl)amine after oral administration to hamsters. Cancer Lett. 2, 323ā€“326.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Konishi, Y., Tsutsumi, M., and Tsujiuchi, T. (1998) Mechanistic analysis of pancreatic ductal carcinogenesis in hamsters. Pancreas 16, 300ā€“306.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Flaks, B., Moore, M. A., and Flaks, A. (1982) Ultrastructural analysis of pancreatic carcinogenesis. V. Changes in differentiation of acinar cells during chronic treatment with N-nitrosobis(2-hydroxypropyl)amine. Carcinogenesis 3, 485ā€“498.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Feng, Z., Hu, W., Chen, J. X., et al. (2002) Preferential DNA damage and poor repair determine ras gene mutational hotspot in human cancer. J. Natl. Cancer Inst. 94, 1527ā€“1536.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Okita, S., Tsutsumi, M., Onji, M., and Konishi, Y. (1995) p53 mutation without allelic loss and absence of mdm-2 amplification in a transplantable hamster pancreatic ductal adenocarcinoma and derived cell lines but not primary ductal adenocarcinomas in hamsters. Mol. Carcinog. 13, 266ā€“271.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Erill, N., Cuatrecasas, M., Sancho, F. J., et al. (1996) K-ras and p53 mutations in hamster pancreatic ductal adenocarcinomas and cell lines. Am. J. Pathol. 149, 1333ā€“1339.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Flaks, B., Moore, M. A., and Flaks, A. (1981) Ultrastructural analysis of pancreatic carcinogenesis. IV. Pseudoductular transformation of acini in the hamster pancreas during N-nitroso-bis(2-hydroxypropyl)amine carcinogenesis. Carcinogenesis 2, 1241ā€“1253.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Flaks, B., Moore, M. A., and Flaks, A. (1982) Ultrastructural analysis of pancreatic carcinogenesis. VI. Early changes in hamster acinar cells induced by N-nitroso-bis(2-hydroxypropyl)amine. Carcinogenesis 3, 1063ā€“1070.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Hall, P. A. and Lemoine, N. R. (1993) Models of pancreatic cancer. Cancer Surv. 16, 135ā€“155.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Rivera, J. A., Graeme-Cook, F., Werner, J., et al. (1997) A rat model of pancreatic ductal adenocarcinoma: Targeting chemical carcinogens. Surgery 122, 82ā€“90.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Rao, M. S. (1987) Animal models of exocrine pancreatic carcinogenesis. Cancer Metastas. Rev. 6, 665ā€“676.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Pour, P. M., Weide, L., Liu, G., et al. (1997) Experimental evidence for the origin of ductal-type adenocarcinoma from the islets of Langerhans. Am. J. Pathol. 150, 2167ā€“2180.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Schaeffer, B. K., Zurlo, J., and Longnecker, D. S. (1990) Activation of c-Ki-ras not detectable in adenomas or adenocarcinomas arising in rat pancreas. Mol. Carcinog. 3, 165ā€“170.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Dissin, J., Mills, L. R., Mains, D. L., Black, O. Jr., and Webster, P. D. (1975) Experimental induction of pancreatic adenocarcinoma in rats. J. Natl. Cancer Inst. 55, 857ā€“864.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Bockman, D. E., Black, O. Jr., Mills, L. R., Mainz, D. L., and Webster, P. D. (1976) Fine structure of pancreatic adenocarcinoma induced in rats by 7,12-dimethyl-benz(a)anthracene. J. Natl. Cancer Inst. 57, 931ā€“936.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Albanese, C., Hulit, J., Sakamaki, T., and Pestell, R. G. (2002) Recent advances in inducible expression in transgenic mice. Semin. Cell Dev. Biol. 13, 129ā€“141.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Tuveson, D. A. and Jacks, T. (2002) Technologically advanced cancer modeling in mice. Curr. Opin. Genet. Dev. 12, 105ā€“110.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Yamamoto, A., Hen, R., and Dauer, W. T. (2001) The ons and offs of inducible transgenic technology: A review. Neurobiol. Dis. 8, 923ā€“932.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Grippo, P. J., Nowlin, P. S., Cassaday, R. D., and Sandgren, E. P. (2002) Cell-specific transgene expression from a widely transcribed promoter using Cre/lox in mice. Genesis 32, 277ā€“286.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743ā€“755.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Sauer, B. (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381ā€“392.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Hammer, R. E., Swift, G. H., Ornitz, D. M., et al. (1987) The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Mol. Cell Biol. 7, 2956ā€“2967.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Ornitz, D. M., Palmiter, R. D., Hammer, R. E., et al. (1985) Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature 313, 600ā€“602.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. De Lisle, R. C. and Logsdon, C. D. (1990) Pancreatic acinar cells in culture: Expression of acinar and ductal antigens in a growth-related manner. Eur. J. Cell Biol. 51, 64ā€“75.

    PubMedĀ  Google ScholarĀ 

  45. Yuan, S., Duguid, W. P., Agapitos, D., Wyllie, B., and Rosenberg, L. (1997) Phenotypic modulation of hamster acinar cells by culture in collagen matrix. Exp. Cell Res. 237, 247ā€“258.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Arias, A. E. and Bendayan, M. (1993) Differentiation of pancreatic acinar cells into duct-like cells in vitro. Lab. Invest. 69, 518ā€“530.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Hall, P. A. and Lemoine, N. R. (1992) Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas. J. Pathol. 166, 97ā€“103.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Vila, M. R., Lloreta, J., and Real, F. X. (1994) Normal human pancreas cultures display functional ductal characteristics. Lab. Invest. 71, 423ā€“431.

    PubMedĀ  CASĀ  Google ScholarĀ 

  49. Wagner, M., Luhrs, H., Kloppel, G., Adler, G., and Schmid, R. M. (1998) Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology 115, 1254ā€“1262.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D., and Brinster, R. L. (1987) Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48, 1023ā€“1034.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Ornitz, D. M., Hammer, R. E., Messing, A., Palmiter, R. D., and Brinster, R. L. (1987) Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science 238, 188ā€“193.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L., and Lee, D. C. (1990) Overexpression of TGF alpha in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61, 1121ā€“1135.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Sandgren, E. P., Quaife, C. J., Paulovich, A. G., Palmiter, R. D., and Brinster, R. L. (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc. Natl. Acad. Sci. USA 88, 93ā€“97.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Grippo, P. J., Nowlin, P. S., Demeure, M. J., Longnecker, D. S., and Sandgren, E. P. (2003) Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant kras in transgenic mice. Cancer Res. 63, 2016ā€“2019.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Peat, N., Gendler, S. J., Lalani, N., Duhig, T., and Taylor-Papadimitriou, J. (1992) Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res. 52, 1954ā€“1960.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Goetze, J. P., Nielsen, F. C., Burcharth, F., and Rehfeld, J. F. (2000) Closing the gastrin loop in pancreatic carcinoma: Coexpression of gastrin and its receptor in solid human pancreatic adenocarcinoma. Cancer 88, 2487ā€“2494.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Watson, S. A. and Caplin, M. (2002) Correspondence re: Weinberg et al., Cholecystokinin and gastrin levels are not elevated in pancreatic carcinoma. Cancer Epidemiol. Biomark. Prev. 10, 721ā€“722. Cancer Epidemiol. Biomark. Prev. 11, 219.

    Google ScholarĀ 

  58. Weinberg, D. S., Heyt, G J., Cavanagh, M., Pitchon, D., McGlynn, K. A., and London, W. T. (2001) Cholecystokinin and gastrin levels are not elevated in human pancreatic adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 10, 721ā€“722.

    CASĀ  Google ScholarĀ 

  59. Mukherjee, P., Ginardi, A. R., Madsen, C. S., et al. (2000) Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. J. Immunol. 165, 3451ā€“3460.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Yen, T. W., Sandgren, E. P., Liggitt, H. D., et al. (2002) The gastrin receptor promotes pancreatic growth in transgenic mice. Pancreas 24, 121ā€“129.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  61. Clerc, P., Leung-Theung-Long, S., Wang, T. C., et al. (2002) Expression of CCK2 receptors in the murine pancreas: Proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology 122, 428ā€“437.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Grippo, P. J. and Sandgren, E. P. (2000) Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am. J. Pathol. 157, 805ā€“813.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Brembeck, F. H., Schreiber, F. S., Deramaudt, T. B., et al. (2003) The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res. 63, 2005ā€“2009.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Gu, G., Dubauskaite, J., and Melton, D. A. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447ā€“2457.

    PubMedĀ  CASĀ  Google ScholarĀ 

  65. Herrera, P. L., Nepote, V., and Delacour, A. (2002) Pancreatic cell lineage analyses in mice. Endocrine 19, 267ā€“278.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Song, S. Y., Gannon, M., Washington, M. K., et al. (1999) Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice over-expressing transforming growth factor alpha. Gastroenterology 117, 1416ā€“1426.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Holland, A. M., Hale, M. A., Kagami, H., Hammer, R. E., and MacDonald, R. J. (2002) Experimental control of pancreatic development and maintenance. Proc. Natl. Acad. Sci. USA 99, 12236ā€“12241.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Donehower, L. A., Harvey, M., Slagle, B. L., et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215ā€“221.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Serrano, M., Lee, H., Chin, L., Cordon-Cardo, C., Beach, D., and DePinho, R. A. (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27ā€“37.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Sirard, C., de la Pompa, J. L., Elia, A., et al. (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107ā€“119.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Sharpless, N. E., Alson, S., Chan, S., Silver, D. P., Castrillon, D. H., and DePinho, R. A. (2002) p16(INK4a) and p53 deficiency cooperate in tumorigenesis. Cancer Res. 62, 2761ā€“2765.

    PubMedĀ  CASĀ  Google ScholarĀ 

  72. Yang, X., Li, C., Herrera, P. L., and Deng, C. X. (2002) Generation of Smad4/Dpc4 conditional knockout mice. Genesis 32, 80ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Wagner, M., Greten, F. R., Weber, C. K., et al. (2001) A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev. 15, 286ā€“293.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Bardeesy, N., Morgan, J., Sinha, M., et al. (2002) Obligate roles for p16(Ink4a) and p19(Arf)-p53 in the suppression of murine pancreatic neoplasia. Mol. Cell Biol. 22, 635ā€“643.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. Cullingworth, J., Hooper, M. L., Harrison, D. J., et al. (2002) Carcinogen-induced pancreatic lesions in the mouse: Effect of Smad4 and Apc genotypes. Oncogene 21, 4696ā€“4701.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Takaku, K., Miyoshi, H., Matsunaga, A., Oshima, M., Sasaki, N., and Taketo, M. M. (1999) Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59, 6113ā€“6117.

    PubMedĀ  CASĀ  Google ScholarĀ 

  77. Morikane, K., Tempero, R., Sivinski, C. L., Kitajima, S., Gendler, S. J., and Hollingsworth, M. A. (2001) Influence of organ site and tumor cell type on MUC1-specific tumor immunity. Int. Immunol. 13, 233ā€“240.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. Bouvet, M., Wang, J., Nardin, S. R., et al. (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res. 62, 1534ā€“1540.

    PubMedĀ  CASĀ  Google ScholarĀ 

  79. Lee, N. C., Bouvet, M., Nardin, S., et al. (2000) Antimetastatic efficacy of adjuvant gemcitabine in a pancreatic cancer orthotopic model. Clin. Exp. Metastas. 18, 379ā€“384.

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Alves, F., Contag, S., Missbach, M., et al. (2001) An orthotopic model of ductal adenocarcinoma of the pancreas in severe combined immunodeficient mice representing all steps of the metastatic cascade. Pancreas 23, 227ā€“235.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. Tarbe, N., Evtimova, V., Burtscher, H., Jarsch, M., Alves, F., and Weidle, U. H. (2001) Transcriptional profiling of cell lines derived from an orthotopic pancreatic tumor model reveals metastasis-associated genes. Anticancer Res. 21, 3221ā€“3228.

    PubMedĀ  CASĀ  Google ScholarĀ 

  82. Tsuzuki, Y., Mouta Carreira, C., Bockhorn, M., Xu, L., Jain, R. K., and Fukumura, D. (2001) Pancreas microenvironment promotes VEGF expression and tumor growth: Novel window models for pancreatic tumor angiogenesis and microcirculation. Lab. Invest. 81, 1439ā€“1451.

    Google ScholarĀ 

  83. Bloomston, M., Shafii, A., Zervos, E. E., and Rosemurgy, A. S. (2002) TIMP-1 overexpression in pancreatic cancer attenuates tumor growth, decreases implantation and metastasis, and inhibits angiogenesis. J. Surg. Res. 102, 39ā€“44.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Wen, Y., Yan, D. H., Wang, B., et al. (2001) p202, an interferon-inducible protein, mediates multiple antitumor activities in human pancreatic cancer xenograft models. Cancer Res. 61, 7142ā€“7147.

    PubMedĀ  CASĀ  Google ScholarĀ 

  85. Bruns, C. J., Harbison, M. T., Kuniyasu, H., Eue, I., and Fidler, I. J. (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1, 50ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Solorzano, C. C., Baker, C. H., Tsan, R., et al. (2001) Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clin. Cancer Res. 7, 2563ā€“2572.

    PubMedĀ  CASĀ  Google ScholarĀ 

  87. Denham, D. W., Franz, M. G., Denham, W., et al. (1998) Directed antisense therapy confirms the role of protein kinase C-alpha in the tumorigenicity of pancreatic cancer. Surgery 124, 218ā€“223; discussion 223ā€“214.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Morioka, C. Y., Saito, S., Kita, K., and Watanabe, A. (2000) Curative resection of orthotopically implanted pancreatic cancer in Syrian golden hamsters. Int. J. Pancreatol. 28, 207ā€“213.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Juhl, H., Sievers, M., Baltzer, K., et al. (1995) A monoclonal antibody-cobra venom factor conjugate increases the tumor-specific uptake of a 99mTc-labeled anti-carcinoembryonic antigen antibody by a two-step approach. Cancer Res. 55, 5749sā€“5755s.

    PubMedĀ  CASĀ  Google ScholarĀ 

  90. Matsushita, A., Onda, M., Uchida, E., Maekawa, R., and Yoshioka, T. (2001) Antitumor effect of a new selective matrix metalloproteinase inhibitor, MMI-166, on experimental pancreatic cancer. Int. J. Cancer 92, 434ā€“440.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. Ng, S. S., Tsao, M. S., Nicklee, T., and Hedley, D. W. (2001) Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin. Cancer Res. 7, 3269ā€“3275.

    PubMedĀ  CASĀ  Google ScholarĀ 

  92. Zervos, E. E., Shafii, A. E., and Rosemurgy, A. S. (1999) Matrix metalloproteinase (MMP) inhibition selectively decreases type II MMP activity in a murine model of pancreatic cancer. J. Surg. Res. 81, 65ā€“68.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. Hotz, H. G., Hines, O. J., Hotz, B., Foitzik, T., Buhr, H. J., and Reber, H. A. (2003) Evaluation of vascular endothelial growth factor blockade and matrix metalloproteinase inhibition as a combination therapy for experimental human pancreatic cancer. J. Gastrointest. Surg. 7, 220ā€“227; discussion 227ā€“228.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  94. Alves, F., Borchers, U., Padge, B., et al. (2001) Inhibitory effect of a matrix metalloproteinase inhibitor on growth and spread of human pancreatic ductal adenocarcinoma evaluated in an orthotopic severe combined immunodeficient (SCID) mouse model. Cancer Lett. 165, 161ā€“170.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Fu, X., Guadagni, F., and Hoffman, R. M. (1992) A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc. Natl. Acad. Sci. USA 89, 5645ā€“5649.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Farre, L., Casanova, I., Guerrero, S., Trias, M., Capella, G., and Mangues, R. (2002) Heterotopic implantation alters the regulation of apoptosis and the cell cycle and generates a new metastatic site in a human pancreatic tumor xenograft model. FASEB J. 16, 975ā€“982.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Liu, C. D., Tilch, L., Kwan, D., and McFadden, D. W. (2002) Vascular endothelial growth factor is increased in ascites from metastatic pancreatic cancer. J. Surg. Res. 102, 31ā€“34.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Morioka, C. Y., Saito, S., Ohzawa, K., and Watanabe, A. (2000) Homologous orthotopic implantation models of pancreatic ductal cancer in Syrian golden hamsters: Which is better for metastasis researchā€”cell implantation or tissue implantation? Pancreas 20, 152ā€“157.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. Hotz, H. G., Reber, H. A., Hotz, B., et al. (2001) An improved clinical model of orthotopic pancreatic cancer in immunocompetent Lewis rats. Pancreas 22, 113ā€“121.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  100. He, Z., Evelhoch, J. L., Mohammad, R. M., et al. (2000) Magnetic resonance imaging to measure therapeutic response using an orthotopic model of human pancreatic cancer. Pancreas 21, 69ā€“76.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Grippo, P.J., Sandgren, E.P. (2005). Modeling Pancreatic Cancer in Animals to Address Specific Hypotheses. In: Su, G.H. (eds) Pancreatic Cancer. Methods in Molecular Medicineā„¢, vol 103. Humana Press. https://doi.org/10.1385/1-59259-780-7:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-780-7:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-107-3

  • Online ISBN: 978-1-59259-780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics