Skip to main content

DNA Extraction and Quantitation of Forensic Samples Using the Phenol-Chloroform Method and Real-Time PCR

  • Protocol
Forensic DNA Typing Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 297))

Abstract

Forensic laboratories are increasingly confronted with problematic samples from the scene of crime, containing only minute amounts of deoxyribonucleic acid (DNA), which may include polymerase chain reaction (PCR)-inhibiting substances. Efficient DNA extraction procedures, as well as accurate DNA quantification methods, are critical steps involved in the process of successful DNA analysis of such samples. The phenolchloroform method is a sensitive method for the extraction of DNA from a wide variety of forensic samples, although it is known to be laborious compared with singletube extraction methods. The relatively high DNA recovery and the quality of the extracted DNA speak for itself. For reliable and sensitive DNA quantitation, the application of realtime PCR is described. We modified a published real-time PCR assay, which allows for the combined analysis of nuclear and mitochondrial DNA, by introducing 1) improved hybridization probes with the use of minor groove binders; 2) an internal positive control (for both nuclear and mitochondrial DNA) for the detection of PCR inhibitors; and 3) different amplicon lengths for the determination of the degradation state of the DNA. The internal positive controls were constructed by site directed mutagenesis by overlap extension of the wild-type mitochondrial and nuclear DNA target with the advantage that no additional probes, which are cost-intensive, are required. The quantitation system is accomplished as a modular concept, which allows for the combined determination of the above-mentioned features (quantity/inhibition or quantity/degradation) depending on the situation,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sambrook, J., Fritsch E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  2. Waye, J. S., and Willard, H. F. (1986). Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol. Cell Biol. 6, 3156–3165.

    PubMed  CAS  Google Scholar 

  3. Waye, J. S., Presley, L. A., Budowle, B., Shutler, G. G., and Fourney, R. M. (1989). A simple and sensitive method for quantifying human genomic DNA in forensic specimen extracts. BioTechniques 7, 852–855.

    Article  PubMed  CAS  Google Scholar 

  4. Walsh, P. S., Varlaro, J., and Reynolds, R. (1992). A rapid chemiluminescent method for quantitation of human DNA. Nucleic Acids Res. 20, 5061–5065.

    Article  PubMed  CAS  Google Scholar 

  5. Andreasson, H., Gyllensten, U., and Allen, M. (2002). Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. BioTechniques 33, 402–411.

    PubMed  CAS  Google Scholar 

  6. Kutyavin, I. V., Afonina, I. A., Mills, A., Gorn, V. V., Lukhtanov, E. A., Belousov, E. S., et al. (2000). 3′'-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28, 655–661.

    Article  PubMed  CAS  Google Scholar 

  7. Hochmeister, M. N., Budowle, B., Borer, U. V., Eggmann, U., Comey, C. T., and Dirnhofer, R. (1991). Typing of deoxyribonucleic acid (DNA) extracted from compact bone from human remains. J. Forensic Sci. 36, 1649–1661.

    PubMed  CAS  Google Scholar 

  8. Gill, P., Jeffreys, A. J., and Werrett, D. J. (1985). Forensic application of DNA fingerprints. Nature 318, 577–579.

    Article  PubMed  CAS  Google Scholar 

  9. Hellmann, A., Rohleder, U., Schmitter, H., and Wittig, M. (2001). STR typing of human telogen hairs-a new approach. Int. J. Legal Med. 114, 269–273.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, L. G., Connell, C. R., and Bloch, W. (1993). Allelic discrimination by nicktranslation PCR with fluorogenic probes. Nucleic Acids Res. 21, 3761–3766.

    Article  PubMed  CAS  Google Scholar 

  11. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996). Real time quantitative PCR. Genome Res. 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  12. Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5′'-3′' exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA. 88, 7276–7280.

    Article  PubMed  CAS  Google Scholar 

  13. Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. (1995). Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.

    PubMed  CAS  Google Scholar 

  14. Lyamichev, V., Brow, M. A., and Dahlberg, J. E. (1993). Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260, 778–783.

    Article  PubMed  CAS  Google Scholar 

  15. Gibson, U. E., Heid, C. A., and Williams, P. M. (1996). A novel method for real time quantitative RT-PCR. Genome Res. 6, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  16. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. (1993). Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11, 1026–1030.

    Article  PubMed  CAS  Google Scholar 

  17. Higuchi, R., Krummel, B., and Saiki, R. K. (1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367.

    Article  PubMed  CAS  Google Scholar 

  18. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989). Sitedirected mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  19. Horton, R. M., Cai, Z. L., Ho, S. N., and Pease, L. R. (1990). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques 8, 528–535.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Köchl, S., Niederstätter, H., Parson, W. (2005). DNA Extraction and Quantitation of Forensic Samples Using the Phenol-Chloroform Method and Real-Time PCR. In: Carracedo, A. (eds) Forensic DNA Typing Protocols. Methods in Molecular Biology, vol 297. Humana Press. https://doi.org/10.1385/1-59259-867-6:013

Download citation

  • DOI: https://doi.org/10.1385/1-59259-867-6:013

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-264-3

  • Online ISBN: 978-1-59259-867-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics