Skip to main content

Quasielastic Light Scattering for Protein Assembly Studies

  • Protocol
Amyloid Proteins

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 299))

Abstract

Quasielastic light scattering (QLS) spectroscopy is an optical method for the determination of diffusion coefficients of particles in solution. In this chapter, we discuss the principles and practice of QLS with respect to protein assembly reactions. Particles undergoing Brownian motion produce fluctuations in scattered light intensity. We describe how the temporal correlation function of these fluctuations can be measured and how this correlation function provides information about the distribution of diffusion coefficients of the particles in solution. We discuss the intricacies of deconvolution of the correlation function and the assumptions incorporated into data analysis procedures. We explain how the Stokes-Einstein relationship can be used to convert distributions of diffusion coefficients into distributions of particle size. Noninvasive observation of the temporal evolution of particles sizes provides a powerful tool for studying protein aggregation and self-assembly. We use examples from studies of A_ fibrillogenesis to illustrate QLS application for understanding the molecular mechanisms of the nucleation and growth of amyloid fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 134.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pecora, R. (1985) Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum Press, New York.

    Google Scholar 

  2. Schmitz, K. S. (1990) An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, Boston.

    Google Scholar 

  3. Selkoe, D. J. (1994) Alzheimer%s disease-A central role for amyloid. J. Neuropath. Exp. Neurol. 53, 438–447.

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.

    Article  PubMed  CAS  Google Scholar 

  5. Kirkitadze, M. D., Bitan, G., and Teplow, D. B. (2002) Paradigm shifts in Alzheimer%s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567–577.

    Article  PubMed  CAS  Google Scholar 

  6. Eaton, W. A. and Hofrichter, J. (1990) Sickle cell hemoglobin polymerization. Adv. Prot. Chem. 40, 63–279.

    Article  CAS  Google Scholar 

  7. Benedek, G. B. (1997) Cataract as a protein condensation disease. Invest. Ophtalmol. Vis. Sci. 38, 1911–1921.

    CAS  Google Scholar 

  8. Lomakin, A., Benedek, G. B., and Teplow, D. B. (1999) Monitoring protein assembly using quasielastic light scattering spectroscopy. Meth. Enzymol. 309, 429–459.

    Article  PubMed  CAS  Google Scholar 

  9. Debye, P.(1947) Molecular-weight determination by light scattering. J. Phys. Col. Chem. 51, 18–32.

    Google Scholar 

  10. Benedek, G. B. (1971) Theory of transparency of eye. Appl. Optics. 10, 459–473.

    Article  CAS  Google Scholar 

  11. Kerker, M.(1969) The scattering of light and other electromagnetic radiation. Academic Press, New York.

    Google Scholar 

  12. Chichoki, B. and Felderhof, B. U. (1993) Dynamic scattering function of a semidiluted suspension of hard spheres. J. Chem. Phys. 98, 8186–8193.

    Article  Google Scholar 

  13. Balabonov, S. M., Ivanova, M. A., Klenin, S. I., Lomakin, A., Molotkov, V. A., and Noskin, V. A. (1988) Quasielastic light scattering study of linear macromolecules dynamics. Macromolecules 21, 2528–2535.

    Article  CAS  Google Scholar 

  14. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) Amyloid ß-protein fibrillogenesis. Detection of protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372.

    Article  PubMed  CAS  Google Scholar 

  15. Tikhonov, A. N. and Arsenin, V. Y. (1977) Solution of Ill-Posed Problems.Halsted Press, Washington.

    Google Scholar 

  16. Koppel, D. E. (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy. The method of cumulants. J. Chem. Phys. 57, 4814–4820.

    Article  CAS  Google Scholar 

  17. Provencher, S. W. (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227.

    Article  Google Scholar 

  18. Braginskaya, T. G., Dobitchin, P. D., Ivanova, M. A., et al. (1983) Analysis of the polydispersity by photon correlation spectroscopy: regularization procedure. Physica Scripta 28, 73–79.

    Article  CAS  Google Scholar 

  19. Bitan, G., Kirkitadze, M. D., Lomakin, A., Vollers, S. S., Benedek, G. B., and Teplow, D. B. (2003) Amyloid a-protein ß assembly: Aß40 and Aß42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA 100, 330–335.

    Article  PubMed  CAS  Google Scholar 

  20. Einsten, A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik und Chemie 17, 549–560.

    Google Scholar 

  21. de la Torre, J. G. and Bloomfield, V. A. (1981) Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Quarterly Reviews of Biophysics 14, 81–139.

    Article  Google Scholar 

  22. Muschol, M. and Rosenberger, F. (1995) Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results. J. Chem. Phys. 103, 10424–10432.

    Article  CAS  Google Scholar 

  23. Yong, W., Lomakin, A., Kirkitadze, M. D., Teplow, D. B., Chen, S.-H., and Benedek, G.B. (2001) Structure determination of micelle-like intermediates in amyloid ß-protein assembly by using small angle neutron scattering. Proc. Natl. Acad. Sci. USA 99, 150–154.

    Article  PubMed  Google Scholar 

  24. Van de Hulst, H. C. (1981) Light Scattering by Small Particles. Dover, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Lomakin, A., Teplow, D.B., Benedek, G.B. (2005). Quasielastic Light Scattering for Protein Assembly Studies. In: Sigurdsson, E.M. (eds) Amyloid Proteins. Methods in Molecular Biology™, vol 299. Humana Press. https://doi.org/10.1385/1-59259-874-9:153

Download citation

  • DOI: https://doi.org/10.1385/1-59259-874-9:153

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-337-4

  • Online ISBN: 978-1-59259-874-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics