Skip to main content
Log in

Scale-up of microbubble dispersion generator for aerobic fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A laboratory-scale microbubble dispersion (MBD) generator was shown to improve oxygen transfer to aerobic microorganisms when coupled to the conventional air-sparger. However, the process was not demonstrated on a large scale to prove its practical application. We investigated the scale-up of a spinning-disk MBD generator for the aerobic fermentation of Saccharomyces cerevisiae (baker’s yeast). A 1-L spinning-disk MBD generator was used to supply air for 1- and 50-L working volume fermentation of baker’s yeast. For the two levels investigated, the MBD generator maintained an adequate supply of surfactant-stabilized air microbubbles to the microorganisms at a relatively low agitation rate (150 rpm). There was a significant improvement in oxygen transfer to the microorganism relative to the conventional sparger. The volumetric mass transfer coefficient, k L a, for the MBD system at 150 rpm was 765 h−1 compared to 937 h−1 for the conventional sparger at 500 rpm. It is plausible to surmise that fermentation using larger working volumes may further improve the k L a values and the dissolved oxygen (DO) levels because of longer hold-up times and, consequently, improve cell growth. There was no statistically significant difference between the cell mass yield on substrate (0.43 g/g) under the MBD regime at an agitation rate of 150 rpm and that achieved for the conventional air-sparged system (0.53 g/g) at an agitation rate of 500 rpm. The total power consumption per unit volume of broth in the 50-L conventional air-sparged system was threefold that for the MBD unit for a similar product yield. Practical application of the MBD technology can be expected to reduce power consumption and therefore operating costs for aerobic fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, J. E. and Ollis, D. F. (1986), Biochemical Engineering Fundamentals, 2nd edition. McGraw-Hill Book Company, New York.

    Google Scholar 

  2. Kaster, J. A., Michelsen, D. L., and Velander, W. H. (1990), Appl. Biochem. Biotechnol. 24/25, 469–484.

    Article  Google Scholar 

  3. Bredwell, M. D. and Worden, R. M. (1998), Biotechnol. Progress 14, 31–38.

    Article  CAS  Google Scholar 

  4. Srivastava, P., Hahr, O., Buchholz, R., and Worden, R. M. (2000), Biotechnol. Bioeng. 70(50), 525–532.

    Article  CAS  Google Scholar 

  5. Sebba, F. (1985), An improved generator for micron-sized bubbles. Chemistry and Industry, February 4, 1985 pp. 91–92.

  6. Sebba, F. (1987), Foams and Biliquid Foams-Aphrons. Wiley, Chichester, Chap 5.

    Google Scholar 

  7. Sebba, F. (1971), J. Colloid Interface Sci. 35(4), 643.

    Article  CAS  Google Scholar 

  8. Kaster, J. A. (1988), Increased oxygen transfer in a yeast fermentation using a microbubble dispersion. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg VA.

    Google Scholar 

  9. Oolman, T. O. and Blanch, H. W. (1983), Bubble coalescence and break-up in fermenters-effect of surfactant, inorganic salts, and non-Newtonian rheology. Abstracts of Papers-American Chemical Society.

  10. Oolman, T. O. and Blanch, H. W. (1986), Chem. Engin. Commun. 43, 237–261.

    Article  CAS  Google Scholar 

  11. Karow, E. O., Bartholomew, W. H., and Sfat, M. R. (1953), Agricultural Food Chem. 1(4), 302.

    Article  CAS  Google Scholar 

  12. Miller, G. L. (1959), J. Biol. Chem. 31(3), 426–428.

    CAS  Google Scholar 

  13. Hubbard, D. W., Ledger, S. E., and Hoffman, J. A. (1994), Scaling-up aerobic fermentation which produce non-Newtonian, viscoelastic broths, in Advances in Bioprocess Engineering, Galindo, E. and Ramirez, O. T. (eds.), Kluwer Academic, Boston, MA, pp. 95–101.

    Google Scholar 

  14. Hubbard, D. W. (1987), Scale-up strategies for bioreactors, in Biotechnology Processes, Scale-Up and Mixing, Ho, C. S. and Oldshue, J. Y. (eds.), American Institute of Chemical Engineers, New York, NY, pp. 168–184.

    Google Scholar 

  15. Wang, D. I. C., Cooney, C. L., Demain, A. L., Dunnill, P., Humphrey, A. E., and Lilly, M. D. (1979), Fermentation and Enzyme Technology, John Wiley, New York, pp. 157–193.

    Google Scholar 

  16. Mateles, R. I. (1971), Biotechnol. Bioeng. 13, 581–582.

    Article  CAS  Google Scholar 

  17. McCabe, W. L., Smith, J. C., and Harriot, P. (2001), Unit Operations of Chemical Engineering, sixth edition, McGraw-Hill, New York, NY pp. 238–285.

    Google Scholar 

  18. Oyama, Y. and Endoh, K. (1955), Chem. Eng. (Japan) 19, 2–11.

    CAS  Google Scholar 

  19. Geankoplis, C. E. (1993), Transport Processes and Unit Operations, Prentice Hall, Englewood Cliffs, NJ, pp. 31–112.

    Google Scholar 

  20. Perry, R. H., Green, D. W., and Maloney, J. O. (eds.) (1984), Perry’s Chemical Engineers Handbook, 5th edition, McGraw-Hill, New York, pp. 6–16.

    Google Scholar 

  21. Shuler, M. L. and Kargi, F. (1992), Bioprocess Engineering, Basic Concepts, Prentice Hall, Englewood Cliffs, NJ, pp. 148–198.

    Google Scholar 

  22. Ju, L.-K. and Chase, G. G. (1992), Bioprocess Engin. 8, 49–53.

    Article  CAS  Google Scholar 

  23. Shuler, M. L. and Kargi, F. (1992), Bioprocess Engineering, Basic Concepts, Prentice Hall, Englewood Cliffs, NJ, pp. 58–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Agblevor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hensirisak, P., Parasukulsatid, P., Agblevor, F.A. et al. Scale-up of microbubble dispersion generator for aerobic fermentation. Appl Biochem Biotechnol 101, 211–227 (2002). https://doi.org/10.1385/ABAB:101:3:211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:101:3:211

Index Entries

Navigation