Skip to main content
Log in

Invertase production on solid-state fermentation by Aspergillus niger strains improved by parasexual recombination

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Invertase production by Aspergillus niger grown by solid-state fermentation was found to be higher than by conventional submerged fermentation. The haploid mutant strains Aw96-3 and Aw96-4 showed better productivity of various enzymes, as compared to wild-type parental strain A. niger C28B25. Here we use parasexual crosses of those mutants to increase further the productivity of invertase in solid-state fermentation. We isolated both a diploid (DAR2) and an autodiploid (AD96-4) strain, which were able to grow in minimal medium after mutation complementation of previously isolated haploid auxotrophic strains. Invertase production was measured in solid-state fermentation cultures, using polyurethane foam as an inert support for fungal growth. Water activity value (Aw) was adjusted to 0.96, since low Aw values are characteristic in some solid-state fermentation processes. Such diploid strains showed invertase productivity levels 5–18 times higher than levels achieved by the corresponding haploid strains. For instance, values for C28B25, Aw96-3, Aw96-4, DAR2, and AD96-4 were 441, 254, 62, 1324, and 2677 IU/(L·h), respectively. These results showed that genetic recombination, achieved through parasexual crosses in A. niger, results in improved strains with potential applications for solid-state fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shankaranand, V. S., Ramesh, M. V., and Lonsane, B. K. (1992), Process Biochem. 27, 33–36.

    Article  CAS  Google Scholar 

  2. Antier, P., Minjares, A., Roussos, S., Raimbault, M., and Viniegra-González, G. (1993), Enzyme Microb. Technol. 15, 254–260.

    Article  CAS  Google Scholar 

  3. Pandey, A., Sevakumar, P., Soccol, C. R., and Nigam, P. (1999), Curr. Sci. 77, 149–162.

    CAS  Google Scholar 

  4. Ramesh, M. V. and Lonsane, B. K. (1991), Appl. Microbiol. Biotechnol. 35, 591–593.

    Article  CAS  Google Scholar 

  5. Solís-Pereira, S., Favela-Torres, E., Viniegra-González, G., and Gutiérrez-Rojas, M. (1993), Appl. Microbiol. Biotechnol. 39, 36–41.

    Google Scholar 

  6. Lekha, P. K. and Lonsane, B. K. (1994), Process Biochem. 29, 497–503.

    Article  CAS  Google Scholar 

  7. Acuña-Argüelles, M. E., Gutiérrez-Rojas, M., Viniegra-González, G., and Favela-Torres, E. (1995), Appl. Microbiol. Biotechnol. 43, 808–814.

    Article  PubMed  Google Scholar 

  8. Romero-Gómez, S., Augur, C., and Viniegra-González (2000), Biotechnol. Lett. 22, 1255–1258.

    Article  Google Scholar 

  9. Bodie, E. A., Armstrong, G. L., and Dunn-Coleman, N. S. (1994), Enzyme Microb. Technol. 16, 376–382.

    Article  PubMed  CAS  Google Scholar 

  10. Kirimura, L., Lee, S. P., Nakajima, I., Kawabe, S., and Usami, S. (1988), Appl. Microbiol. Biotechnol. 27, 504–506.

    CAS  Google Scholar 

  11. Sarangbin, S., Morikawa, S., Kirimura, K., and Usami, S. (1994), J. Ferment. Bioeng. 77, 474–478.

    Article  CAS  Google Scholar 

  12. Loera, O., Aguirre, J., and Viniegra-González, G. (1999), Enzyme Microb. Technol. 25, 103–108.

    Article  CAS  Google Scholar 

  13. Bos, C. J., Debets, J. M., Nachtegaal, H., Slakhrost, S. M., and Swart, K. (1992), Curr. Genet. 21, 117–120.

    Article  CAS  Google Scholar 

  14. Bos, C. J. (1987), Curr. Genet. 12, 471–474.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  16. Bradford, M. (1976), Anal. Chem. 72, 248–254.

    CAS  Google Scholar 

  17. Aranda-Tamaura, C. and Loera, O. (1999), Book of Abstracts for the VIII National Congress and IV Latinamerican Congress on Biotechnology and Bioengineering, Sociedad Mexicana de Biotecnología y Bioingeniería, Huatulco, México.

    Google Scholar 

  18. Chi, Z., and Liu, Z. (1997), Enzyme Microb. Technol. 21, 463–467.

    Article  CAS  Google Scholar 

  19. Rodriguez, L., Narciandi, R. E., Roca, H., Cremata, J., Montesinos, R., Rodriguez, E., Grillo, J. M., Muzio, V., Herrera, L. S., and Delgado, J. M. (1996), Yeast 12, 815–822.

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka, H., Kamogawa, T., Aoyagi, H., Kato, I., and Nakajima, R. (2000), J. Biosci. Bioeng. 89, 498–500.

    Article  PubMed  CAS  Google Scholar 

  21. Loera, O. and Viniegra-González, G. (1998), Biotech. Tech. 12, 801–804.

    Article  CAS  Google Scholar 

  22. Loera, O. (1994), MSc thesis, Universidad Autónoma Metropolitana-Iztapalapa, México City, México.

    Google Scholar 

  23. Serlupi-Crescenzi, O., Kurtz, M., and Champe, S. (1983), J. Gen. Microbiol. 129, 3535–3544.

    PubMed  CAS  Google Scholar 

  24. Ball, C. (1983), in Genetics and Breeding of Industrial Microorganisms, Ball, C. (ed.), CRC, Boca Raton, FL, pp. 159–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Loera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montiel-González, A.M., Fernández, F.J., Viniegra-González, G. et al. Invertase production on solid-state fermentation by Aspergillus niger strains improved by parasexual recombination. Appl Biochem Biotechnol 102, 63–70 (2002). https://doi.org/10.1385/ABAB:102-103:1-6:063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:102-103:1-6:063

Index Entries

Navigation