Skip to main content
Log in

Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic wastes such as neem hull, wheat bran, and sugarcane bagasse, available in abundance, are excellent substrates for the production of ligninolytic enzymes under solid-state fermentation by white-rot fungi. A ligninolytic enzyme system with high activity showing enhanced decomposition was obtained by cocultivation of Pleurotus ostreatus and Phanerochaete chrysosporium on combinations of lignocellulosic waste. Among the various substrate combinations examined, neem hull and wheat bran wastes gave the highest ligninolytic activity. A maximum production of laccase of 772 U/g and manganese peroxidase of 982 U/g was obtained on d 20 and lignin peroxidase of 656 U/g on d 25 at 28±1 °C under solid-state fermentation. All three enzymes thus obtained were partially purified by acetone fractionation and were exploited for decolorizing different types of acid and reactive dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waldner, R., Leisola, M. S. A., and Fiechter, A. (1988), Appl. Microbiol. Biotechnol. 29, 400–407.

    Article  CAS  Google Scholar 

  2. Evans, C. S. (1991), in Biodegradation: Natural and Synthetic Materials, Betts, W. B., ed., Springer Verlag, London, pp. 175–184.

    Google Scholar 

  3. Chen, H. C. A., Dostoretz, C. G., and Grethlein, H. E. (1991), Enzyme. Microb. Technol. 13, 404–407.

    Article  CAS  Google Scholar 

  4. Hattaka, A. (1994), FEMS Microbiol. Rev. 13, 125–135.

    Article  Google Scholar 

  5. De Jong, E., Field, J. A., and De Bont, J. A. M. (1992), FEBS Lett. 299, 107–110.

    Article  PubMed  Google Scholar 

  6. Buckley, K. F. and Dobson, A. D. W. (1998), Biotech. Lett. 20(3), 301–306.

    Article  CAS  Google Scholar 

  7. Knapp, J. S., Newby, P. S., and Reece, L. P. (1994), Enzyme Microb. Technol. 17, 664–668.

    Article  Google Scholar 

  8. Mehna, A., Bajpai, P., and Bajpai, P. K. (1993), Enzyme Microb. Technol. 17, 18–22.

    Article  Google Scholar 

  9. Tatarko, M. and Bumpus, J. A. (1998), Water Sci. Technol. 32(5), 1713–1717.

    CAS  Google Scholar 

  10. Goering, H. K. and Van Soest, P. J. (1970), in Forage Fiber Analysis, Agricultural Handbook No. 379, Agricultural Research Service, Washington, DC, pp. 1–19.

    Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  12. APHA. (1995), Standard methods for the production of water and wastewater, American Public Health Association, 19th ed., Washington, DC.

  13. Palmieri, G., Giardina, P., Marzullo, L., Desiderio, B., Nitti, B., Cannio, R., and Sannia, G. (1993), Appl. Microbiol. Biotechnol. 39, 632–636.

    Article  PubMed  CAS  Google Scholar 

  14. Tien, M. and Kirk, T. K. (1988), Methods Enzymol. 161, 238–243.

    Article  CAS  Google Scholar 

  15. Katagiri, N., Tsutsumi, Y., and Nishida, T. (1995), Appl. Environ. Microbiol. 61, 617–627.

    PubMed  CAS  Google Scholar 

  16. Sasek, V., Volfova, O., Erbanova, P., Vyas, B. R. M., and Matucha, M. (1993), Biotechnol. Lett. 15, 521–526.

    Article  CAS  Google Scholar 

  17. Kotterman, M. J. J., Rietberg, H. J., Hage, A., and Field, J. A. (1997), Biotechnol. Bioeng. 57, 220–227.

    Article  Google Scholar 

  18. Schloser, D., Grey, R., and Fritsche, W. (1997), Appl. Microbiol. Biotechnol. 47, 412–418.

    Article  Google Scholar 

  19. Huttermann, A., Geabauer, M., Volger, C., and Rosger, C. (1977), Holzforschung 31, 83–89.

    Article  Google Scholar 

  20. Harrs, A., Chet, I., and Huttermann, A. (1981), Eur. J. Forest Pathol. 11, 67–76.

    Google Scholar 

  21. Ascher, K. R. S. (1993), Arch. Insect Biochem. Physiol. 22, 433–449.

    Article  CAS  Google Scholar 

  22. Harrs, A. and Huttermann, A. (1983), Arch. Microbiol. 134, 1309–1313.

    Google Scholar 

  23. Sutherland, J. B., Pometto, A. L., and Crawford, D. L. (1983), Can. J. Bot. 61, 1194–1198.

    Article  CAS  Google Scholar 

  24. Wong, Y. and Yu, J. (1999), Water Res. 33, 3512–3520.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datta Madamwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, P., Madamwar, D. Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl Biochem Biotechnol 102, 109–118 (2002). https://doi.org/10.1385/ABAB:102-103:1-6:109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:102-103:1-6:109

Index Entries

Navigation