Skip to main content
Log in

Potential use of cutinase in enzymatic scouring of cotton fiber cuticle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study characterized the ability of a bacterial cutinase to improve the wettability of raw cotton fabrics by specific hydrolysis of the cutin structure of the cuticle. The effect of cutinase was studied alone and in coreaction with pectin lyase. The changes in both the fabric and the reaction fluid were measured and compared to enzymatic hydrolysis with polygalacturonase, and to chemical hydrolysis with boiling NaOH. Water absorbancy, specific staining, fabric weight loss, and evaporative light-scattering reversephase high-performance liquid chromatography analysis of chloroform extract of the reaction fluid were measured to assess the enzymatic hydrolysis of the cuticle waxy layer. The pattern and extent of hydrolysis of the major cuticle constituents depended on the enzyme type and titers employed and paralleled the degree of wettability obtained. The combination of cutinase and pectin lyase resulted in a synergistic effect. The use of detergents improved enzymatic scouring. The major products released to the reaction medium by the cutinase treatment were identified by gas chromatography/mass spectrometry analysis as C:16 and C:18 saturated fatty acid chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Husain, P., Lang, N. K., Henderson, L., Liu, J., and Condon, B. (1999), in Book of Papers, International Conference and Exhibition, American Association of Textile Chemists and Colorists, Charlotte, NC, pp. 170–182.

    Google Scholar 

  2. Hardin, I. R., Li, Y., and Akin, D. (1998), in Enzyme Applications in Fiber Processing, ACS Symposium Series 687, Eriksson, K. E. and Cavaco-Paulo, A., eds., American Chemical Society, Washington, DC, pp. 190–203.

    Google Scholar 

  3. Hartzell, M. M. and Hsieh, Y.-L. (1998), in Enzyme Applications in Fiber Processing, ACS Symposium Series 687, Eriksson, K. E. and Cavaco-Paulo, A., eds., American Chemical Society, Washington, DC, pp. 212–227.

    Google Scholar 

  4. Kolattukudy, P. E. (1980), in The Biochemistry of Plants, vol. 4, Stumpf, P., ed., Academic, New York, pp. 571–642.

    Google Scholar 

  5. Kolattukudy, P. E. (1985), Annu. Rev. Phytopathol. 23, 223–250.

    Article  CAS  Google Scholar 

  6. Hartzell, M. M. and Hsieh, Y.-L. (1998), Text. Res. J. 68, 233–241.

    CAS  Google Scholar 

  7. Rossner, U. (1993), Melliand Textilber. 74, 144–148.

    Google Scholar 

  8. Buchert, J., Pere, J., Puolakka, A., and Nousiainen, P. (2000), Text. Chem. Color. 32, 48–52.

    CAS  Google Scholar 

  9. Li, Y. and Hardin, I. R. (1997), Text. Chem. Color. 29, 71–79.

    CAS  Google Scholar 

  10. Li, Y. and Hardin, I. R. (1998), Text. Chem. Color. 30, 23–29.

    CAS  Google Scholar 

  11. Cavaco-Paulo, A. (1988), in Enzyme Applications in Fiber Processing, ACS Symposium Series 687, Eriksson, K. E. and Cavaco-Paulo, A., eds., American Chemical Society, Washington, DC, pp. 180–189.

    Google Scholar 

  12. Li, Y. and Hardin, I. R. (1998), Text. Res. J. 68, 671–679.

    Article  CAS  Google Scholar 

  13. Traore, M. K. and Buschle-Diller, G. (1999), in Book of Papers, International Conference and Exhibition, American Association of Textile Chemists and Colorists, Charlotte, NC, pp. 183–189.

    Google Scholar 

  14. Sakai, T., Sakamoto, T., Hallaert, J., and Vandamme, E. J. (1993), Adv. App. Microbiol. 39, 213–294.

    CAS  Google Scholar 

  15. Krebs Lange, N. (1997), Text. Chem. Color. 29, 23–26.

    Google Scholar 

  16. Csiszar, E., Szakacs, G., and Rusznak, I. (1998), in Enzyme Applications in Fiber Processing, ACS Symposium Series 687, Eriksson, K. E. and Cavaco-Paulo, A., eds., American Chemical Society, Washington, DC, pp. 204–211.

    Google Scholar 

  17. Ueda, M., Koo, H., Wakida, T., and Yoshimura, Y. (1994), Text. Res. J. 64, 615–618.

    Article  CAS  Google Scholar 

  18. Purdy, R. E. and Kolattukudy, P. E. (1973), Arch. Biochem. Biophys. 159, 61–69.

    Article  PubMed  CAS  Google Scholar 

  19. Kolattukudy, P. E., Purdy, R. E., and Maiti, I. B. (1981), Methods Enzymol. 71, 652–664.

    CAS  Google Scholar 

  20. Spagna, G., Pifferi, P. G., and Martino, A. (1993), J. Chem. Technol. Biotechnol. 57, 379–385.

    Article  CAS  Google Scholar 

  21. Dygert, S., Li, L. H., Florida, D., and Thoma, J. A. (1967), Anal. Biochem. 13, 367–374.

    Article  Google Scholar 

  22. American Association of Textile Chemists and Colorists (AATCC). (1977), Technical Manual, vol. 27, American Association of Textile Chemists and Colorists, Research Triangle Park, NC, p. 286.

    Google Scholar 

  23. Krebs Lange, N. (1997), Text. Chem. Color. 29, 23–26.

    Google Scholar 

  24. Hjelmenad, L. M. and Chrambach, A. (1984), Methods Enzymol. 104, 305–319.

    Google Scholar 

  25. Walton, T. J. and Kolattukudy, P. E. (1972), Biochemistry 11, 1885–1896.

    Article  PubMed  CAS  Google Scholar 

  26. Ray, K., Lin, Y. Y., Gerard, H. C., Chen, Z., Osman, S. F., Fett, W. F., Moreau, R. A., and Stark, R. E. (1995), Phytochemistry 38, 1361–1369.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Dosoretz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degani, O., Gepstein, S. & Dosoretz, C.G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl Biochem Biotechnol 102, 277–289 (2002). https://doi.org/10.1385/ABAB:102-103:1-6:277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:102-103:1-6:277

Index Entries

Navigation