Skip to main content
Log in

Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Undesirable protease production by Aspergillus niger Aa-20 in submerged culture and solid-state culture was evaluated using different concentrations of tannic acid as sole carbon source in a model system designed for tannase production. Protease production was found to be dependent on the culture system used (submerged culture or solid-state culture) and on the initial tannic acid concentration. Expression of protease activity in submerged culture was higher (up to 10 times) than activity obtained in solid-state culture, using identical culture medium composition. In submerged culture, the lowest final protease activity (0.13 IU) was obtained with the highest tannic acid concentration, while in solid-state culture protease activity was not affected by changes in initial substrate concentration. Absence of detectable proteolytic activity in solid-state culture is related to high production of tannase enzyme. Hence, the use of solid-state culture for fungal enzyme production may allow for higher and more stable enzyme titers present in culture extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero-Gómez, S. J., Augur, C., and Viniegra-González, G. (2000), Biotechnol. Lett. 22(15), 1255–1258.

    Article  Google Scholar 

  2. Ramesh, M. V. and Lonsane, B. K. (1991), Appl. Microbiol. Biotechnol. 35, 591–593.

    Article  CAS  Google Scholar 

  3. Solís-Pereira, S., Favela-Torres, E., Viniegra-González, G., and Gutiérrez-Rojas, M. (1993), Appl. Microbiol. Biotechnol. 39, 36–41.

    Google Scholar 

  4. Maldonado, M. C. and Strasser de Saad, A. M. (1998), J. Ind. Microbiol. Biotechnol. 20, 34–38.

    Article  PubMed  CAS  Google Scholar 

  5. Lekha, P. K. and Lonsane, B. K. (1994), Proc. Biochem. 29, 497–503.

    Article  CAS  Google Scholar 

  6. George, S., Raju, V., Subramanian, V., and Jarayaman, K. (1997), Bioprocess. Eng. 16, 381, 382.

    Article  CAS  Google Scholar 

  7. Alazard, D. and Raimbault, M. (1981), Eur. J. Appl. Microbiol. Biotechnol. 12, 113–117.

    Article  CAS  Google Scholar 

  8. Grajek, W. and Gervais, P. (1987), Appl. Microbiol. Biotechnol. 26, 537–541.

    Article  CAS  Google Scholar 

  9. Oriol, E., Raimbault, M., Roussos, S., and Viniegra-González, G. (1988), Appl. Microbiol. Biotechnol. 27, 498–503.

    CAS  Google Scholar 

  10. Aguilar, C. N. (1999), Arch. Latinoam. Microbiol. 41, 10–21.

    Google Scholar 

  11. Aguilar, C. N., Augur, C., Favela-Torres, E., and Viniegra-González, G. (2001), Proc. Biochem. 36, 571–578.

    Article  Google Scholar 

  12. Aguilar, C. N., Augur, C., Favela-Torres, E., and Viniegra-González, G. (2001), J. Ind. Microbiol. Biotechnol. 26, 296–302.

    Article  PubMed  CAS  Google Scholar 

  13. Klapper, B. F., Jameson, D. M., and Mayer, R. M. (1973), Biochim. Biophys. Acta 304, 513–519.

    PubMed  CAS  Google Scholar 

  14. Nakadai, T. and Nasuno, S. (1988), J. Ferment. Technol. 66, 525–533.

    Article  CAS  Google Scholar 

  15. Fukushima, Y., Itoh, H., Fukase, T., and Motai, H. (1989), Appl. Microbiol. Biotechnol. 30, 604–608.

    Article  CAS  Google Scholar 

  16. Aikat, K. and Bhattacharyya, B. C. (2000), Acta Biotechnologica 20(2), 149–159.

    Article  CAS  Google Scholar 

  17. Thakur, M. S., Karanth, N. G., and Nand, K. (1990), Appl. Microbiol. Biotechnol. 32, 409–413.

    Article  CAS  Google Scholar 

  18. Battaglino, R. A., Huergo, M., Pilosuf, A. M. R., and Bartholomai, G. B. (1991), Appl. Microbiol. Biotechnol. 35, 292–296.

    Article  CAS  Google Scholar 

  19. Malathi, S. and Chakraverty, R. (1991), Appl. Environ. Microbiol. 57, 712–716.

    PubMed  CAS  Google Scholar 

  20. Ikasari, L. and Mitchell, D. A. (1994), World J. Microbiol. Biotechnol. 10, 320–324.

    Article  CAS  Google Scholar 

  21. Tunga, R., Banerjee, R., and Bhattacharyya, B. C. (1998), Bioprocess. Eng. 19, 187–190.

    Article  CAS  Google Scholar 

  22. Mitra, P., Chakraverty, R., and Chandra, A. L. (1996), J. Sci. Ind. Res. 55, 439–442.

    CAS  Google Scholar 

  23. Godfrey, T. and Reichelt, J. R. (1983), in Industrial Enzymology, Nature Press, New York, pp. 1–7.

    Google Scholar 

  24. Kim, H., Kim, K., Lee, J., Bae, K., Sung, C., and Oh, T. (1994), J. Microbiol. Biotechnol. 4, 113–118.

    CAS  Google Scholar 

  25. Ward, O. P. (1983), in Microbial Enzymes and Biotechnology, Fogarty, W., ed., Elsevier Applied Sciences, London, pp. 251–317.

    Google Scholar 

  26. Yang, S. S and Chiu, W. F. (1986), Chin. J. Microbiol. Immunol. 19, 276–288.

    CAS  Google Scholar 

  27. Yang, S. S. and Wang, J. Y. (1999), Bot. Bull. Acad. Sin. 40, 259–265.

    CAS  Google Scholar 

  28. Couri, S., da Costa-Terzi, S., Saavedra-Pinto, G. A., Pereira-Freitas, S., and Augusto da Costa, A. C. (2000), Proc. Biochem. 36, 255–261.

    Article  CAS  Google Scholar 

  29. Zhu, Y., Smith, J., Knol, W., and Bol, J. (1994), Biotechnol. Lett. 16, 643–648.

    Article  CAS  Google Scholar 

  30. Dosoretz, C., Chih-Chen, H., and Grethlein, H. (1990), Appl. Environ. Microbiol. 56, 395–400.

    PubMed  CAS  Google Scholar 

  31. Beverini, M. and Metche, M. (1990), Sci. Aliments 10, 807–816.

    CAS  Google Scholar 

  32. Layman, P. (1990), Chem. Eng. News 68, 17, 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Augur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, C.N., Favela-Torres, E., Vinegra-González, G. et al. Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl Biochem Biotechnol 102, 407–414 (2002). https://doi.org/10.1385/ABAB:102-103:1-6:407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:102-103:1-6:407

Index Entries

Navigation