Skip to main content
Log in

Codigestion of proteinaceous industrial waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Organic wastes are increasingly collected source separated, thus requiring additional treatment or recovery capacities for municipal biowastes, organic industrial wastes, as well as agroindustrial byproducts. In this study, we demonstrate that anaerobic digestion is preferentially suited for high-water-containing liquid or pasty waste materials. We also evaluate the suitability of various organic wastes and byproducts as substrates for anaerobic digestion and provide a current status survey of codigestion. Biodegradation tests and estimations of the biogas yield were carried out with semisolid and pasty proteins and lipids containing byproducts from slaughterhouses; pharmaceutical, food, and beverage industries; distilleries; and municipal biowastes. Biogas yields in batch tests ranged from 0.3 to 1.36 L/g of volatile solidsadded. In continuous fermentation tests, hydraulic retention times (HRTs) between 12 and 60 d, at a fermentation temperature of 35°C, were required for stable operation and maximum gas yield. Laboratory experiments were scaled up to full-scale codigestion trials in municipal and agricultural digestion plants. Up to 30% cosubstrate addition was investigated, using municipal sewage sludge as well as cattle manure as basic substrate. Depending on addition rate and cosubstrate composition, the digester biogas productivity could be increased by 80–400%. About 5–15% cosubstrate addition proved to be best suited, without causing any detrimental effects on the digestion process or on the further use of the digestate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmelz, K.-G. (2000), Paper presented at the Symposium Kommunale Chance: Energie aus Biomasse, 25. 5. 2000 Gießen, Inst. für kommunale Wirtschaft und Umweltplanung, Wiesbaden, Germany.

    Google Scholar 

  2. IONICS ITALBA. (1989), Technical report, Ionics Italba, Milano, Italy.

    Google Scholar 

  3. OWS. (1997), DRANCO—Anlagen Referenzliste, Fa. Organic Waste Systems, Gent, Belgium.

    Google Scholar 

  4. Edelmann, W. and Engeli, H. (1998), Co-Vergärung von festen und flüssigen Substraten, study of the Nationaler Energieforschungsfonds, NEFF of the Kanton Bern, Arbeitsgemeinschaft Bioenergie und AG für Abfallverwertung, Maschwanden, Switzerland.

    Google Scholar 

  5. Braun, R. (1998), Anaerobtechnologie für die mechanisch—biologische Vorbehandlung von Restmüll und Klärschlamm, Band 10, Schriftenreihe Federal Ministry of Environment, Vienna, Austria.

    Google Scholar 

  6. Schmelz, K.-G. and Tatus, R. (1999), in Bio- und Restabfallbehandlung III, Wiemer, K. and Kern, M., eds., M. I. C. Baeza Press, Witzenhausen, Germany, pp. 365–388.

    Google Scholar 

  7. CITEC. (2000), References list, CITEC, Vaasa, Finland.

    Google Scholar 

  8. Langhans, G. (2000), Abfall Brief—Magazin zur Abfallpraxis 7(2), 7–9.

    Google Scholar 

  9. Pavan, P., Battistoni, P., Bolzonella, D., Innocenti, L., Traverso, P., and Checchi, F. (2000), in Proceedings of the 4th International Symposium on Environmental Biotechnology, Hartmans, S. and Lens, P., eds.

  10. Schmelz, K.-G. (2000), in Co-Vergärung von Klärschlamm und Bioabfällen, Bidlingmaier, W., ed., Rhombos Press, Berlin, pp. 1–220.

    Google Scholar 

  11. Bro, B. (2000), Paper presented at the symposium Kick-off for a Future Development of Biogas Technology, Swedish National Energy Administration, Eskilstuna, Sweden.

    Google Scholar 

  12. GBA. (2001), Biogas Nutzung in Deutschland, Stand 28. 2. 2001, Neue Energie, Magazin für erneuerbare Energien (ed.), Fachverband Biogas e. V., Freising, Germany (biogas@t-online.de).

    Google Scholar 

  13. Membrez, Y. and Fruteau de Laclos, H. (2001), in Proceedings of the 9th World Congress on Anaerobic Digestion 2002, Pt. 1, Van Velsen, A. F. M. and Verstraete, W. H., eds., Technology Institute vzw, Antwerp, Belgium, pp. 581–584.

    Google Scholar 

  14. Graf, W., Maier, H., Krotschek, C., and Puchas, K. (2001), Biogas Handbuch, Lokale Energieagentur Oststeiermark (ed.), Feldbach, Austria.

    Google Scholar 

  15. Al Seadi, T. (2000), Danish Centralized Biogas Plants—Plant Descriptions, Jens Bo Holm-Nielsen, ed., Bioenergy Department, University of Southern Denmark, Esbjerg.

    Google Scholar 

  16. Hjort-Gregersen, K. (2000), Paper presented at the symposium Kick-off for a Future Development of Biogas Technology, Swedish National Energy Administration, Eskilstuna, Sweden.

    Google Scholar 

  17. Lindberg, A. (2000), Paper presented at the symposium Kick-off for a Future Development of Biogas Technology, Swedish National Energy Administration, Eskilstuna, Sweden.

    Google Scholar 

  18. Kern, M. (1999), in Bio- und Restabfallbehandlung III, Wiemer, K. and Kern, M., eds., M. I. C. Baeza Press, Witzenhausen, pp. 293–321.

    Google Scholar 

  19. Hoppenheidt, K. and Mücke, W. (1999), Study on behalf of Bayerisches Landesamt für Umweltschutz, Bayerisches Landesamt für Umweltschutz, BlfA-Texte Nr. 11, Augsburg, Germany.

  20. Braun, R. (2001), Stand der Technik der Bioabfallvergärung, Study on behalf of the Umweltanwaltschaft Wien, Vienna, Austria.

    Google Scholar 

  21. Wellinger, A. (2000), Paper presented at the symposium Kick-off for a Future Development of Biogas Technology, Swedish National Energy Administration, Eskilstuna, Sweden.

    Google Scholar 

  22. Brolin, L. and Kättström, L. (2000), Paper presented at the symposium Kick-off for a Future Development of Biogas Technology, Swedish National Energy Administration, Eskilstuna, Sweden.

    Google Scholar 

  23. Holm-Nielsen, J. B. and Al Seadi, T. (1997), Final Report EU Altener Programme, contract no. 4. 1030/D/95-006, University of Southern Denmark, Esbjerg.

    Google Scholar 

  24. DEV. (2001), Deutsche Einheitsverfahren zur Wasser- und Abwasseruntersuchung, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  25. Brachtl, E. (2000), PhD thesis, University of Agriculture and Forestry, Vienna, Austria.

    Google Scholar 

  26. Grasmug, M., Wellacher, M., and Braun, R. (2001), in Proceedings of the 9th World Congress on Anaerobic Digestion, Part 2, Van Velsen, L. and Verstraete, W., eds., Technological Institute Belgium, Antwerp, pp. 349–352.

    Google Scholar 

  27. European Commission. (2001), Biological Treatment of Bio-waste—Guideline 2nd draft, Directorate General Environment, Brussels, Belgium.

    Google Scholar 

  28. European Commission. (2001), Regulation of the EU Parliament on Health Rules Concerning Animal By-Products COM (2001) 748 final, Directorate General Environment, Brussels, Belgium.

    Google Scholar 

  29. Grasmug, M. (2001), Paper presented at the workshop Co-fermentation in kommunalen Kläranlagen, IFA Tulln, Austria.

  30. Braun, R., Steinlechner, K., Steffen, R., and Steyskal, F. (1995), Symposium Proceedings No. 14, 27–43, Braun, R., ed., Environmental Agency, Vienna, Austria.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, R., Brachtl, E. & Grasmug, M. Codigestion of proteinaceous industrial waste. Appl Biochem Biotechnol 109, 139–153 (2003). https://doi.org/10.1385/ABAB:109:1-3:139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:109:1-3:139

Index Entries

Navigation