Skip to main content
Log in

Aerobic and anaerobic microbial degradation of poly-β-hydroxybutyrate produced by Azotobacter chroococcum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Food industry wastewater served as a carbon source for the synthesis of poly-β-hydroxybutyrate (PHB) by Azotobacter chroococcum. The content of polymer in bacterial cells grown on the raw materials reached 75%. PHB films were degraded under aerobic, microaerobic, and anaerobic conditions in the presence and absence of nitrate by microbial populations of soil, sludges from anaerobic and nitrifying/denitrifying reactors, and sediment from a sludge deposit site. Changes in molecular mass, crystallinity, and mechanical properties of PHB were studied. Anaerobic degradation was accompanied by acetate formation, which was the main intermediate utilized by denitrifying bacteria or methanogenic archaea. On a decrease in temperature from 20 to 5° C in the presence of nitrate, the rate of PHB degradation was 7.3 times lower. Under anaerobic conditions and in the absence of nitrate, no PHB degradation was observed, even at 11°C. The enrichment cultures of denitrifying bacteria obtained from soil and anaerobic sludge degraded PHB films for a short time (3–7 d). The dominant species in the enrichment culture from soil were Pseudomonas fluorescens and Pseudomonas stutzeri. The rate of PHB degradation by the enrichment cultures depended on the polymer molecular weight, which reduced with time during biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braunegg, G., Lefebre, G., and Genser, K. (1998), J. Biotechnol. 65, 127–161.

    Article  CAS  Google Scholar 

  2. Budwill, K., Fedorak, P. M., and Page, W. J. (1996), J. Environ. Polymer Degrad. 4(2), 91–102.

    Article  CAS  Google Scholar 

  3. Bonartseva, G. A., Myshkina, V. L., and Zagreba, E. D. (1994), Microbiology 63, 45–48.

    Google Scholar 

  4. Bonartseva, G. A., Myshkina, V. L., and Zagreba, E. D. (1995), Microbiology 64, 30–33.

    Google Scholar 

  5. Page, W. J. (1992), FEMS Microbiol. Rev. 103, 149–158.

    Article  CAS  Google Scholar 

  6. Kim, B. S. and Chang, H. N. (1998), Biotechnol. Lett. 20, 109–112.

    Article  CAS  Google Scholar 

  7. Bonartseva, G. A., Myshkina, V. L., Zagreba, E. D., and Nikolaeva, D. A. (2001), Patent RU 2001 1128134.

  8. Mokeeva, B. L., Chekunova, L. N., Myshkina, V. L., Nicolaeva, D. A., Gerasin, B. A., and Bonartseva, G. A. (2002), Appl. Biochem. Microbiol., in press.

  9. Maergaert, J., Anderson, C., Wouters, A., Swings, J., and Kersters, K. (1992), FEMS Microbiol. Rev. 103, 317–322.

    Article  Google Scholar 

  10. Savenkova, L., Gercberga, Z., Nikolaeva, V., Dzene, A., Bibers, J., and Kalnin, M. (2000), Process Biochem. 35, 573–579.

    Article  CAS  Google Scholar 

  11. Brandle, H., Bachofen, R., Mayer, J., and Wintermantel, E. (1995), Can. J. Microbiol. 41, 143–153.

    Article  Google Scholar 

  12. Scandola, M. (1995), Can. J. Microbiol. 41, 310–315.

    CAS  Google Scholar 

  13. Koyama, N. and Doi, Y. (1995), Can. J. Microbiol. 41, 316–322.

    CAS  Google Scholar 

  14. Biedermann, J., Owen, A. J., Schloe, K. T., Gassner, P., and Susmuth, R. (1997), Can. J. Microbiol. 43, 561–569.

    Article  CAS  Google Scholar 

  15. Kalyuzhnyi, S., Sklyar, V., Archipchenko, I., Barboulina, I., Orlova, O., Epov, A., Nekrasova, V., Nozhevnikova, A., Kovalev, A., and Derikx, P. (2000), in Proceedings of International Conference on Microbial Ecotechnology in Processing of Organic and Agricultural Wasters, Arkhipchenko, J. and Kalyuzhnyi, S., eds., Express, St. Petersburg, Russia, pp. 40–48.

    Google Scholar 

  16. Nozhevnikova, A. N., Nekrasova, V. K., Kevbrina, M. V., and Kotsyurbenko, O. R. (2001), Water Sci. Technol. 44(4), 89–95.

    CAS  Google Scholar 

  17. Quevedo, M., Guynot, E., and Muxi, L. (1996), Biotechnol. Lett. 18(12), 1363–1368.

    Article  CAS  Google Scholar 

  18. Pfenning, N. and Lippert, K. D. (1966), Arch. Microbiol. 55, 245, 246.

    Google Scholar 

  19. Wolin, E. A., Wolin, M. J., and Wolfe, R. S. (1963), J. Biol. Chem. 238, 2882–2886.

    CAS  Google Scholar 

  20. Pfenning, N. (1965), Zbl. Bakt. I. Abt. Orig. Suppl. 1, 179–189.

    Google Scholar 

  21. Akita, S., Einaga, Y., Miyaki, Y., and Fujita, H. (1975), Macromolecules 9, 774–780.

    Article  Google Scholar 

  22. Rebrov, A. V., Bonartseva, G. A., Dubinscii, V. A., Necrasov, Y. P., and Antipov, E. M. (2002), Polymer Sci. A 44(2), 1–5.

    Google Scholar 

  23. Buchanan, R. E. and Gibbons, N. E. (1974), in Bergey's Manual of Determinative Bacteriology, 8th ed., Holt, J. G., ed., Williams & Wilkins, Baltimore, pp. 122–127.

    Google Scholar 

  24. Spyros, A., Kimmich, R., Briese, D. H., and Jendrossek, D. (1997), Macromolecules 30, 8218–8225.

    Article  CAS  Google Scholar 

  25. Doi, Y., Kanesawa, Y., and Kunioka, M. (1990), Macromolecules 23, 26–31.

    Article  CAS  Google Scholar 

  26. Hocking, P. J., Marchessault, R. H., Timmins, M. R., Lenz, R. W., and Fuller, R. C. (1996), Macromolecules 29, 2472–2478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Bonartseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonartseva, G.A., Myshkina, V.L., Nikolaeva, D.A. et al. Aerobic and anaerobic microbial degradation of poly-β-hydroxybutyrate produced by Azotobacter chroococcum . Appl Biochem Biotechnol 109, 285–301 (2003). https://doi.org/10.1385/ABAB:109:1-3:285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:109:1-3:285

Index Entries

Navigation