Skip to main content
Log in

Purification and characterization of two xylanases from alkalophilic and thermophilic Bacillus licheniformis 77-2

  • Session 1B: Enzyme Catalysis and Engineering
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The alkalophilic bacteria Bacillus licheniformis 77-2 produces significant quantities of thermostable cellulase-free xylanases. The crude xylanase was purified to apparent homogeneity by gel filtration (G-75) and ionic exchange chromatography (carboxymethyl sephadex, Q sepharose, and Mono Q), resulting in the isolation of two xylanases. The molecular masses of the enzymes were estimated to be 17 kDa (X-I) and 40 kDa (X-II), as determined by SDS-PAGE. The K m and V max values were 1.8 mg/mL and 7.05 U/mg protein (X-I), and 1.05 mg/mL and 9.1 U/mg protein (X-II). The xylanases demonstrated optimum activity at pH 7.0 and 8.0–10.0 for xylanase X-I and X-II, respectively, and, retained more than 75% of hydrolytic activity up to pH 11.0. The purified enzymes were most active at 70 and 75°C for X-I and X-II, respectively, and, retained more than 90% of hydrolytic activity after 1 h of heating at 50°C and 60°C for X-I and X-II, respectively. The predominant products of xylan hydrolysates indicated that these enzymes were endoxylanases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damiano, V. B., Bocchini, D. A., Gomes, E., and Da Silva, R. (2003), World J. Microbiol. Biotechnol., 19, 139–144.

    Article  CAS  Google Scholar 

  2. Ohara, H. (2003), Appl. Microbiol. Biotechnol., 62, 474–477.

    Article  PubMed  CAS  Google Scholar 

  3. Mosier, N., Wyman, C., Dale, B., et al. (2005), Bioresour. Technol. 96, 673–686.

    Article  PubMed  CAS  Google Scholar 

  4. Alam, M., Gomes, I., Mohiuddin, G., and Hoq, M. M. (1994), Enzyme Microb. Technol. 16, 298–302.

    Article  CAS  Google Scholar 

  5. Biely, P., Vrsanslá, M., and Kucar, S. (1992), In: Xylans and Xylamases, Visser, J., ed., Elsevier, Wageningen, The Netherlands, pp. 80–95.

    Google Scholar 

  6. Tavares, V. B., Gomes, E., and Da Silva, R. (1997), J. Brazilian Soc. Microbiol., 28, 179–182.

    CAS  Google Scholar 

  7. Archana, A. and Satyanarayana, T. (2003), World J. Microbiol. Biotechnol., 19, 53–57.

    Article  CAS  Google Scholar 

  8. Miller, G. L. (1959), Anal. Chem., 31, 426–428.

    Article  CAS  Google Scholar 

  9. Laemmli, U. K. (1970), Nature, 227, 680–685.

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Meril, C. R. (1990), In: Methods in Enzymology, Deutscher, M. P. ed., Academic Press, New York, pp. 477–480.

    Google Scholar 

  11. McCroskery, P. A., Richards, J. F., and Harris, E. D. Jr. (1975), Biochem. J., 152, 131–142.

    PubMed  CAS  Google Scholar 

  12. Breccia, J. D., Siñeriz, F., Baigorí, M. D., Castro, G. R., and Haiti-Kaul, R. (1998), Enzyme Microb. Technol. 22, 42–49.

    Article  CAS  Google Scholar 

  13. Nakamura, S., Ishiguro, Y., Nakai, R., Wakabayashi, K., Aono, R., and Horikoshi, K. (1995), J. Mol. Cat. B. Enz., 1, 7–15.

    Article  CAS  Google Scholar 

  14. Maiti, B. and Whitmire, D. (1997), Chem. Eng. Commun., 162, 169–175.

    CAS  Google Scholar 

  15. Beg, Q. K., Kapoor, M., Mahajan, L., and Hoondal, G. S. (2001), Appl. Microbiol. Biotechnol. 56, 326–338.

    Article  PubMed  CAS  Google Scholar 

  16. Khasin, A., Alchanati, I., and Shoham, Y. (1993), Appl. Environ. Microbiol. 59, 1725–1730.

    PubMed  CAS  Google Scholar 

  17. Chen, C., Chen, J. L., and Lin, T. Y. (1997), Enzyme Microb. Technol., 21, 91–96.

    Article  CAS  Google Scholar 

  18. Nath, D. and Rao, M. (2001), Enz. Microb. Technol., 28, 397–403.

    Article  CAS  Google Scholar 

  19. Marques, S., Alves, L., Ribeiro, S., Girio, F. M., and Amaral Collaco, M. T. (1998) Appl. Biochem. Biotechnol. 73, 59–72.

    Google Scholar 

  20. Honda, H., Kudo, T., Ikura, Y., and Horikoshi, K. (1985), Canadian J. Microbiol., 31, 538–542.

    Article  CAS  Google Scholar 

  21. Bastawde, K. B. (1992), World J. Microbiol. Biotechnol. 8, 353–368.

    Article  CAS  Google Scholar 

  22. Devine, P. L., Warren, J. A., and Layton, G. T. (1990), Biotechniques, 8, 354–356.

    PubMed  CAS  Google Scholar 

  23. Dixon, B. (1991), Biotechnology, 9, 418–418.

    Article  Google Scholar 

  24. Christov, L. P. and Prior, B. A. (1993), Enzyme Microbiol. Technol. 15, 460–475.

    Article  CAS  Google Scholar 

  25. Rudd, P. M., Joao, H. C., Coghill, E., et al. (1994), Biochemistry, 33, 17–22.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, C., Eufemi, M., Turano, C., and Giartosio, A. (1996), Biochemistry, 35, 7299–7307.

    Article  PubMed  CAS  Google Scholar 

  27. Hamada, N., Ishikawa, K., and Fuse, N. J. (1999), Biosc. Bioeng. 87, 442–451.

    Article  CAS  Google Scholar 

  28. Li, P., Gao, X. G. and Arellano, R. O. (2001), Protein Exp. Purification 22, 369–380.

    Article  CAS  Google Scholar 

  29. Davis, B. G. (2002), Chem. Rev. 102, 579–601.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damiano, V.B., Ward, R., Gomes, E. et al. Purification and characterization of two xylanases from alkalophilic and thermophilic Bacillus licheniformis 77-2. Appl Biochem Biotechnol 129, 289–302 (2006). https://doi.org/10.1385/ABAB:129:1:289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:129:1:289

Index Entries

Navigation