Skip to main content
Log in

Fundamental factors affecting biomass enzymatic reactivity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Poplar wood was treated with peracetic acid, KOH, and ball milling to produce 147 modellignocelluloses with a broad spectrum of lignin contents, acetyl contents, and crystallinity indices (CrIs), respectively. An empirical model was identified that describes the roles of these three properties in enzymatic hydrolysis. Lignin content and CrI have the greatest impact on biomass digestibility, whereas acetyl content has a minor impact. The digestibility of several lime-treated biomass samples agreed with the empirical model. Lime treatment removesallacetyl groups and a moderate amount of lignin and increases CrIslightly; lignin removal is the dominant benefit from lime treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klyosov, A. A. (1986), Appl. Biochem. Biotechnol. 12, 249–300.

    Google Scholar 

  2. Holtzapple, M. T., Ross, M. K., Chang, N.-S., Chang, V. S., Adelson, S. K., and Brazel, C. (1997), in Fuels and Chemicals from Biomass, Saha, B. C. and Woodward, J., eds., American Chemical Society, Washington, DC, pp. 130–142.

    Google Scholar 

  3. Cowling, E. B., (1975), Biotechnol. Bioeng. Symp. 5, 163–181.

    CAS  Google Scholar 

  4. Dunlap, C. E., Thomson, J., and Chiang, L. C. (1976), AIChE Symp. Ser. 15872, 58–63.

    Google Scholar 

  5. Wilkinson, J. M. and Santillana, R. G. (1978), Anim. Feed Sci. Technol. 3, 117–132.

    Article  CAS  Google Scholar 

  6. Ibrahim, M. N. M. and Pearce, G. R., (1983), Agric. Wastes 5, 135–156.

    Article  CAS  Google Scholar 

  7. Lin, K. W., Ladisch, M. R., Voloch, M., Patterson, J. A., and Noller, C. H. (1985), Biotechnol. Bioeng. 27, 1427–1433.

    Article  CAS  Google Scholar 

  8. Weimer, P. J., Chou, Y.-C.T., Weston, W. M., and Chase, D. B. (1986), Biotechnol. Bioeng. Symp. 17, 5–18.

    CAS  Google Scholar 

  9. Rolz, C., de Arriola, M. C., Valladares, J., and de Cabrera, S. (1987), Process Biochem. 22, 17–23.

    CAS  Google Scholar 

  10. Grethlein, H. E. and Converse, A. O. (1991), Bioresource Technol. 36, 77–82.

    Article  CAS  Google Scholar 

  11. Norkrans, B. (1950), Physiol. Plant 3, 75–87.

    Article  Google Scholar 

  12. Walseth, C. S. (1952), Tappi 35(5), 233–238.

    CAS  Google Scholar 

  13. Sullivan, J. T. (1959), J. Anim. Sci. 18, 1292–1298.

    CAS  Google Scholar 

  14. Van Soest, P. J. (1969), in Cellulases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 262–278.

    Google Scholar 

  15. Stone, J. E., Scallan, A. M., Donefer, E., and Ahlgren, E. (1969), in Cellu lases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 219–241.

    Google Scholar 

  16. Feist, W. C., Baker, A. J., and Tarkow, H. (1970), J. Anim. Sci. 30, 832–835.

    CAS  Google Scholar 

  17. Baker, A. J. (1973), J. Anim. Sci. 36(4), 768–771.

    CAS  Google Scholar 

  18. Anderson, D. C. and Ralston, A. T. (1973), J. Anim. Sci., 37 (1), 148–152.

    CAS  Google Scholar 

  19. Caulfield, D. F. and Moore, W. E. (1974), Wood Sci. 6(4), 375–379.

    CAS  Google Scholar 

  20. Han, Y. W., Lee, J. S., and Anderson, A. W. (1975), J. Agric. Food Chem. 23, 928–931.

    Article  CAS  Google Scholar 

  21. Sasaki, T., Tanaka, T., Nanbu, N., Sato, Y., and Kainuma, K. (1979), Biotechnol. Bioeng. 21, 1031–1042.

    Article  CAS  Google Scholar 

  22. Fan, L. T., Lee, Y.-H., and Breadmore, D. H. (1980), Biotechnol. Bioeng. 22, 177–199.

    Article  CAS  Google Scholar 

  23. Knappert, D., Grethlein, H., and Converse, A. (1980), Biotechnol. Bioeng. 22, 1449–1463.

    Article  CAS  Google Scholar 

  24. Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1981), Biotechnol. Bioeng. Symp. 11, 29–45.

    CAS  Google Scholar 

  25. Gharpuray, M. M., Lee, Y.-H., and Fan, L. T. (1983), Biotechnol. Bioeng. 25, 157–172.

    Article  CAS  Google Scholar 

  26. Han, Y. W., Catalano, E. A., and Ciegler, A. (1983), J. Agric. Food Chem. 31, 34–38.

    Article  CAS  Google Scholar 

  27. Puri, V. P. (1984), Biotechnol. Bioeng. 26, 1219–1222.

    Article  CAS  Google Scholar 

  28. Grethlein, H. E. (1985), Bio/Technol. 3, 155–160.

    Article  CAS  Google Scholar 

  29. Bertran, M. S. and Dale, B. E., (1985), Biotechnol. Bioeng. 27, 177–181.

    Article  CAS  Google Scholar 

  30. Wei, C.-J. and Cheng, C.-Y. (1985), Biotechnol. Bioeng. 27, 1418–1426.

    Article  CAS  Google Scholar 

  31. Weimer, P. J. and Weston, W. M. (1985), Biotechnol. Bioeng. 27, 1540–1547.

    Article  CAS  Google Scholar 

  32. Grous, W. R., Converse, A. O., and Grethlein, H. E. (1986), Enzyme Microb. Technol. 8, 274–280.

    Article  CAS  Google Scholar 

  33. Rivers, D. B. and Emert, G. H. (1988), Biotechnol. Bioeng. 31, 278–281.

    Article  CAS  Google Scholar 

  34. Grohmann, K., Mitchell, D. J., Himmel, M. E., Dale, B. E., and Schroeder, H. A. (1989), Appl. Biochem. Biotechnol. 20/21, 45–61.

    Google Scholar 

  35. Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991), Appl. Biochem. Biotechnol. 30, 43–59.

    CAS  Google Scholar 

  36. Kong, R., Engler, C. R., and Soltes, E. J. (1992), Appl. Biochem. Biotechnol. 34, 23–35.

    Google Scholar 

  37. Thompson, D. N. and Chen, H.-C. (1992), Bioresource Technol. 39, 155–163.

    Article  CAS  Google Scholar 

  38. Koullas, D. P., Christakopoulos, P., Kekos, D., Macris, B. J. and Koukios, E. G. (1992), Biotechnol. Bioeng. 39, 113–116.

    Article  CAS  Google Scholar 

  39. Vinzant, T. B., Ehrman, C. I., Adney, W. S., Thomas, S. R., and Himmel, M. E. (1997), Appl. Biochem. Biotechnol. 62, 99–104.

    CAS  Google Scholar 

  40. Moniruzzaman, M., Dale, B. E., Hespell, R. B., and Bothast, R. J. (1997), Appl. Biochem. Biotechnol. 67, 113–126.

    CAS  Google Scholar 

  41. Holtzapple, M. T. (1993), in Encyclopedia of Food Science, Food Technology, and Nutrition, vol. 4, Macrae, R., Robinson, R. K., and Sadler, M. J., eds., Academic, London, pp. 758–767.

    Google Scholar 

  42. Bouveng, H. O. (1961), Acta Chem. Scand. 15, 87–96.

    CAS  Google Scholar 

  43. Tarkow, H. and Feist, W. C. (1969), in Cellulases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 197–218.

    Google Scholar 

  44. Chang, V. S., Holtzapple, M. T., and Davidson, R., (1996), Part III, Final Report, Subcontract XAW-3-11181-03, National Renewable Enrgy Laboratory, Golden, CO.

    Google Scholar 

  45. Chang, V. S., Burr, B., and Holtzapple, M. T. (1997), Appl. Biochem. Biotechnol. 63–65, 3–19.

    Article  Google Scholar 

  46. Chang, V. S., Nagwani, M., and Holtzapple, M. T. (1998), Appl. Biochem. Biotechnol. 74, 135–159.

    CAS  Google Scholar 

  47. Browning, B. L. (1967), Methods of Wood Chemistry, vol. 2, Interscience, New York.

    Google Scholar 

  48. Chemical Analysis & Testing Standard Procedure, National Renewable Energy Laboratory, Golden, CO.

  49. Whistler, R. L. and Jeans, A. (1943), Ind. Eng. Chem., Anal. Ed. 15(5), 317, 318.

    Article  CAS  Google Scholar 

  50. Segal, L., Creely, J. J., Martin, A. E., Jr., and Conrad, C. M. (1959), Textile Res. J. 29, 786–794.

    CAS  Google Scholar 

  51. Chang, S. (1999), PhD thesis, Texas A& M University, College Station.

  52. Lee, Y.-H. and Fan, L. T. (1982), Biotechnol. Bioeng. 24, 2383–2406.

    Article  CAS  Google Scholar 

  53. Pugh, E. M. and Winslow, G. H. (1966), The Analysis of Physical Measurements, Addson-Wesley, Reading, MA.

    Google Scholar 

  54. Shoemaker, D. P., Garland, C. W., and Steinfeld, J. I. (1974) Experiments in Physical Chemistry, McGraw-Hill, New York.

    Google Scholar 

  55. Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1987), Cellulose Hydrolysis, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Holtzapple.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, V.S., Holtzapple, M.T. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84, 5–37 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:5

Index Entries

Navigation