Skip to main content
Log in

Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of pullulan from beet molasses by a pigment-free strain of Aureobasidium pullulans on shake-flask culture was investigated. Combined pretreatment of molasses with sulfuric acid and activated carbon to remove potential fermentation inhibitors present in molasses resulted in a maximum pullulan concentration of 24 g/L, a biomass dry wt of 14 g/L, a pullulan yield of 52.5%, and a sugar utilization of 92% with optimum fermentation conditions (initial sugar concentration of 50 g/L and initial pH of 7.0). The addition of other nutrients as carbon and nitrogen supplements (olive oil, ammonium sulfate, yeast extract) did not further improve the production of the exopolysaccharides. Structural characterization of the isolated polysaccharides from the fermentation broths by 13C-nuclear magnetic resonance spectroscopy and pullulanase digestion combined with size-exclusion chromatography confirmed the identity of pullulan and the homogeneity (>93% dry basis) of the elaborated polysaccharides by the microorganism. Using multiangle laser light scattering and refractive index detectors in conjunction with high-performance size-exclusion chromatography molecular size distributions and estimates of the molecular weight (M w =2.1−4.1×105), root mean square of the radius of gyration (R g =30−38 nm), and polydispersity index (M w /M n =1.4−2.4) were obtained. The fermentation products of molasses pretreated with sulfuric acid and/or activated carbon were more homogeneous and free of contaminating proteins. In the concentration range of 2.8−10.0 (w/v), the solution’s rheologic behavior of the isolated pullulans was almost Newtonian (within 1 and 1200 s−1 at 20°C); a slight shear thinning was observed at 10.0 (w/v) for the high molecular weight samples. Overall, beet molasses pretreated with sulfuric acid and activated carbon appears as an attractive fermentation medium for the production of pullulan by A. pullulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deshpande, M. S., Rale, V. B., and Lynch, J. M. (1992), Enzyme Microb. Technol. 14, 514–527.

    Article  CAS  Google Scholar 

  2. Diab, T., Biliaderis, C. G., Gerasopoulos, D., and Sfakiotakis, E. (2001), J. Sci. Food Agric. 81, 988–1000.

    Article  CAS  Google Scholar 

  3. Shabtai, Y. and Mukmenev, I. (1995), Appl. Microbiol. Biotechnol. 43, 595–603.

    Article  CAS  Google Scholar 

  4. Gibbs, P. A. and Seviour, R. J. (1992), Biotechnol. Lett. 14, 491–494.

    Article  CAS  Google Scholar 

  5. Youssef F., Biliaderis, C. G., and Roukas, T. (1998), Appl. Biochem. Biotechnol. 74, 13–30.

    CAS  Google Scholar 

  6. Youssef, F., Roukas, T., and Biliaderis, C. G. (1999), Process Biochem. 34, 355–366.

    Article  CAS  Google Scholar 

  7. West, T. P. and Reed-Hamer, B. (1993), Microbios 75, 261–268.

    CAS  Google Scholar 

  8. Boa, J. M. and LeDuy, A. (1987), Biotechnol. Bioeng. 30, 463–470.

    Article  CAS  Google Scholar 

  9. Israilides, C., Smith, A., Scanlon, B., and Barnett, C. (1999), Biotechnol. Gen. Eng. Rev. 16, 309–324.

    CAS  Google Scholar 

  10. Shin, Y., Kim, Y. H., Lee, H. S., Cho, S. J., and Byun, S. M. (1989), Biotechnol. Bioeng. 33, 129–133.

    Article  CAS  Google Scholar 

  11. Roukas, T. and Biliaderis, C. G. (1995), Appl. Biochem. Biotechnol. 55, 27–44.

    CAS  Google Scholar 

  12. Leathers, T. D. and Gupta, S. C. (1994), Biotechnol. Lett. 16, 1163–1166.

    Article  CAS  Google Scholar 

  13. Roukas, T. (1999), J. Ind. Microbiol. Biotechnol. 22, 617–621.

    Article  CAS  Google Scholar 

  14. Roukas, T. (1999), World J. Microbiol. Biotechnol. 15, 447–450.

    Article  CAS  Google Scholar 

  15. Israilides, C., Smith, A., Harthill, J. E., Barnett, C., Bambalov, G., and Scanlon, B. (1998), Appl. Microbiol. Biotechnol. 49, 613–617.

    Article  CAS  Google Scholar 

  16. Roukas, T. (1998), Process Biochem. 33, 805–810.

    Article  CAS  Google Scholar 

  17. Roukas, T. and Liakopoulou-Kyriakides, M. (1999), J. Food Eng. 40, 89–94.

    Article  Google Scholar 

  18. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  20. Biliaderis, C. G., Grant, D. R., and Vose, J. R. (1981), Cereal Chem. 58, 496–502.

    CAS  Google Scholar 

  21. Israilides, C., Scanlon, B., Smith, A., Harding, S. E., and Jumel, K. (1994), Carbohydr. Polym. 25, 203–209.

    Article  CAS  Google Scholar 

  22. LeDuy, A. and Boa, J. M. (1983), Can. J. Microbiol. 29, 143–146.

    Article  CAS  Google Scholar 

  23. Barnett, C., Smith, A., Scanlon, B., and Israilides, C. J. (1999), Carbohydr. Polym. 38, 203–209.

    Article  CAS  Google Scholar 

  24. West, T. P. and Strohfus, B. A. (1996), J. Basic Microbiol. 36, 377–380.

    Article  CAS  Google Scholar 

  25. Seviour, R. J., Stasinopoulos, S. J., Auer, D. P. F., and Gibbs, P. A. (1992), Crit. Rev. Biotechnol. 12, 279–298.

    Article  CAS  Google Scholar 

  26. LeDuy, A., Yarmoff, J.-J., and Chagraoui, A. (1983), Biotechnol. Lett. 5, 49–54.

    Article  CAS  Google Scholar 

  27. Lacroix, C., LeDuy, A., Noel, G., and Choplin, L. (1985), Biotechnol. Bioeng. 27, 202–207.

    Article  CAS  Google Scholar 

  28. Auer, D. P. F. and Seviour, R. J. (1990), Appl. Microbiol. Biotechnol. 32, 637–644.

    Article  CAS  Google Scholar 

  29. Catley, B. J. (1973), J. Gen. Microbiol. 78, 33–38.

    CAS  Google Scholar 

  30. Catley, B. J. (1980), J. Gen. Microbiol. 120, 265–268.

    CAS  Google Scholar 

  31. Heald, P. J. and Kristiansen, B. (1985), Biotechnol. Bioeng. 27, 1516–1519.

    Article  CAS  Google Scholar 

  32. Simon, L., Caye-Vaugien, C., and Bouchonneau, M. (1993), J. Gen. Microbiol. 139, 979–985.

    CAS  Google Scholar 

  33. Simon, L., Bouchet, B., Caye-Vaugien, C., and Gallant, D. J. (1995), Can. J. Microbiol. 40, 35–45.

    Article  Google Scholar 

  34. Papon, P., Simon, L., and Caye-Vaugien, C. (1989), J. Cryp. Mycol. 10, 227–242.

    Google Scholar 

  35. Gorin, P. A. J. (1981), Adv. Carbohydr. Chem. Biochem. 38, 13–104.

    Article  CAS  Google Scholar 

  36. Catley, B. J. (1970), FEBS Lett. 10, 190–193.

    Article  CAS  Google Scholar 

  37. Lee, K. Y. and Yoo, Y. J. (1993), Biotechnol. Lett. 15, 1021–1024.

    Article  CAS  Google Scholar 

  38. Pollock, T. J., Thorne, L., and Armentrout, R. W. (1992), Appl. Environ. Microbiol. 58, 877–883.

    CAS  Google Scholar 

  39. Rees, D. A. (1977), Polysaccharide Shapes, Chapman & Hall, London, pp. 41–61.

    Google Scholar 

  40. Yuen, S. (1974), Process Biochem. 9, 7–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas G. Biliaderis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazaridou, A., Biliaderis, C.G., Roukas, T. et al. Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture. Appl Biochem Biotechnol 97, 1–22 (2002). https://doi.org/10.1385/ABAB:97:1:01

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:97:1:01

Index Entries

Navigation