Skip to main content
Log in

Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The white-rot fungus Trametes multicolor MB 49 has been identified as an excellent producer of the industrially important enzyme laccase. The formation of extracellular laccase could be considerably stimulated by the addition of Cu(II) to a simple, glycerol-based culture medium. In this study, optimal concentrations of copper were found to be 0.5–1 mM, which were added during the growth phase of the fungus. Other medium components important for laccase production are the carbon and nitrogen sources employed. When using an optimized medium containing glycerol (40 g/L), peptone from meat (15 g/L), and MgSO4·7H2O and stimulating enzyme formation by the addition of 1.0 mM Cu, maximal laccase activities obtained in shake-flask cultures were approx 85 U/mL. These results, however, could not be scaled up to a laboratory fermentor cultivation. Laccase production by T. multicolor decreased considerably when the fungus was grown in a stirred-tank reactor, presumably because of damage of the mycelia caused by shear stress and/or changes in the morphology of the fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reinhammar, B. R. M. (1984), in Copper Proteins and Copper Enzymes, vol. 3, Lontie, R., ed., CRC Press, Boca Raton, FL, pp. 1–35.

    Google Scholar 

  2. Thurston, C. F. (1994), Microbiology 140, 19–26.

    CAS  Google Scholar 

  3. Eggert, C., Temp, U., and Eriksson, K.-E. L. (1996), ACS Symp. Ser. 655, 130–150.

    CAS  Google Scholar 

  4. Solomon, E. I., Sundaram, U. M., and Machonkin, T. E. (1996), Chem. Rev. 96, 2563–2605.

    Article  CAS  Google Scholar 

  5. Mayer, A. M. and Harel, E. (1979), Phytochemistry 18, 193–215.

    Article  CAS  Google Scholar 

  6. Mayer, A. M. (1987), Phytochemistry 26, 11–20.

    Article  Google Scholar 

  7. Gianfreda, L., Xu, F., and Bollag, J.-M. (1999), Biorem. J. 3, 1–25.

    Article  CAS  Google Scholar 

  8. Youn, H. -D., Hah, Y. C. and Kang, S. -O. (1995), FEMS Microbiol. Lett. 132, 183–188.

    Article  CAS  Google Scholar 

  9. Henson, J. M., Butler, M. J., and Day, A. W. (1999), Ann. Rev. Phytopathol. 37, 447–471.

    Article  CAS  Google Scholar 

  10. Wood, D. A. (1980), J. Gen. Microbiol. 117, 339–345.

    CAS  Google Scholar 

  11. Zhao, J. and Kwan, H. S. (1999), Appl. Environ. Microbiol. 65, 4908–4913.

    CAS  Google Scholar 

  12. Bar-Nun, N., Tal-Lev, A., Harel, E., and Mayer, A.M. (1988), Phytochemistry 27, 2505–2509.

    Article  CAS  Google Scholar 

  13. Rigling, D. and van Alfen, N. K. (1993), Appl. Environ. Microbiol. 59, 3634–3636.

    CAS  Google Scholar 

  14. Bollag, J.-M. and Leonowicz, A. (1984), Appl. Environ. Microbiol. 48, 849–854.

    CAS  Google Scholar 

  15. Eggert, C., Temp, U., and Eriksson, K.-E. L. (1996), Appl. Environ. Microbiol. 62, 1151–1158.

    CAS  Google Scholar 

  16. Mansur, M., Suárez, T., and González, A. E. (1998), Appl. Environ. Microbiol. 64, 771–774.

    CAS  Google Scholar 

  17. Lee, I.-Y., Jung, K.-H., Lee, C.-H., and Park, Y.-H. (1999), Biotechnol. Lett. 21, 965–968.

    Article  CAS  Google Scholar 

  18. Marbach, I., Harel, E., and Mayer, A.M. (1985), Phytochemistry 24, 2559–2561.

    Article  CAS  Google Scholar 

  19. Ardon, O., Kerem, Z., and Hadar, Y. (1996), J. Biotechnol. 51, 201–207.

    Article  CAS  Google Scholar 

  20. Crestini, C., D’Annibale, A., and Giovannozzi-Sermanni, G. (1996), Biotechnol. Tech. 10, 243–248.

    Article  CAS  Google Scholar 

  21. Pointing, S. B., Jones, E. B. G., and Vrijmoed, L. L. P. (2000), Mycologia 92, 139–144.

    Article  CAS  Google Scholar 

  22. Collins, P. J. and Dobson, A. D. (1997), Appl. Environ. Microbiol. 63, 3444–3450.

    CAS  Google Scholar 

  23. Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., and Sannia, G. (2000), Appl. Environ. Microbiol. 66, 920–924.

    Article  CAS  Google Scholar 

  24. Galhaup, C. and Haltrich, D. (2001), Appl. Microbiol. Biotechnol. 56, 225–232.

    Article  CAS  Google Scholar 

  25. Cervantes, C. and Gutierrez-Corona, F. (1994), FEMS Microbiol. Rev. 14, 121–137.

    Article  CAS  Google Scholar 

  26. Labbé, S. and Thiele, D. J. (1999), Trends Microbiol. 7, 500–505.

    Article  Google Scholar 

  27. Xu, F. (1999), in Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, vol. 3, Flickinger, M. C. and Drew, S. W., eds., John Wiley, NY, pp. 1545–1554.

    Google Scholar 

  28. Jönsson, L. J., Saloheimo, M., and Penttilä, M. (1997), Curr. Genet. 32, 425–430.

    Article  Google Scholar 

  29. Bourbonnais, R. and Paice, M. G. (1990), FEBS Lett. 267, 99–102.

    Article  CAS  Google Scholar 

  30. Hess, J. (2001), MS thesis, University of Agricultural Sciences, Vienna, Austria.

    Google Scholar 

  31. Buswell, J. A., Cai, Y. J., and Chang, S. -T. (1995), FEMS Microbiol. Lett. 128, 81–88.

    Article  CAS  Google Scholar 

  32. Sethuraman, A., Akin, D. E., and Eriksson, K. E. (1999), Appl. Microbiol. Biotechnol. 52, 689–697.

    Article  CAS  Google Scholar 

  33. Muñoz, C., Guillén, F., Martínez, A. T., and Martínez, M. J. (1997), Curr. Microbiol. 34, 1–5.

    Article  Google Scholar 

  34. Sethuraman, A., Akin, D. E., Eisele, J. G., and Eriksson, K.-E. L. (1998), Can. J. Microbiol. 44, 872–885.

    Article  CAS  Google Scholar 

  35. Vasconcelos, A. F. D., Barbosa, A. M., Dekker, R. F. H., Scarminio, I. S., and Rezende, M. I. (2000), Process Biochem. 35, 1131–1138.

    Article  CAS  Google Scholar 

  36. Karahanian, E., Corsini, G., Lobos, S. and Vicuña, R. (1998), Biochim. Biophys. Acta 1443, 65–74.

    CAS  Google Scholar 

  37. Dittmer, J. K., Patel, N. J., Dhawale, S. W., and Dhawale, S. S. (1997), FEMS Microbiol. Lett. 149, 65–70.

    Article  CAS  Google Scholar 

  38. Kirk, T. K. and Cullen, D. (1998), in Environmentally Friendly Technologies for the Pulp and Paper Industry, Young, R. A. and Akhtar, M., eds., Wiley, NY, pp. 273–307.

    Google Scholar 

  39. Kaal, E. E. J., Field, J. A., and Joyce, T. W. (1995), Bioresour. Technol. 53, 133–139.

    Article  CAS  Google Scholar 

  40. Herpoël, I., Moukha, S., Lesage-Meessen, L., Sigoillot, J., and Asther, M. (2000), FEMS Microbiol. Lett. 183, 301–306.

    Google Scholar 

  41. Leitner, C., Haltrich, D., Nidetzky, B., Prillinger, H., and Kulbe, K. D. (1998), Appl. Biochem. Biotechnol. 70–72, 237–248.

    Google Scholar 

  42. Thomas, C. R. (1990), in Chemical Engineering Problems in Biotechnology, Winkler, M. A., ed., Elsevier Applied Science, London, pp. 23–93.

    Google Scholar 

  43. Braun, S. and Vecht-Lifshitz, S. E. (1991), Trends Biotechnol. 9, 63–68.

    Google Scholar 

  44. Baminger, U., Ludwig, R., Galhaup, C., Leitner, C., Kulbe, K. D., and Haltrich, D. (2001), J. Mol. Catal. B. Enzymatic 11, 541–550.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Haltrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, J., Leitner, C., Galhaup, C. et al. Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor . Appl Biochem Biotechnol 98, 229–241 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:229

Index Entries

Navigation