Skip to main content
Log in

Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The ethanologenic bacteria Escherichia coli strains KO11 and LYO1, and Klebsiella oxytoca strain P2, were investigated for their ability to metabolize furfural. Using high performance liquid chromatography and 13C-nuclear magnetic resonance spectroscopy, furfural was found to be completely biotransformed into furfuryl alcohol by each of the three strains with tryptone and yeast extract as sole carbon sources. This reduction appears to be constitutive with NAD(P)H acting as electron donor. Glucose was shown to be an effective source of reducing power. Succinate inhibited furfural reduction, indicating that flavins are unlikely participants in this process. Furfural at concentrations >10 mM decreased the rate of ethanol formation but did not affect the final yield. Insight into the biochemical nature of this furfural reduction process may help efforts to mitigate furfural toxicity during ethanol production by ethanologenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dean, F. M. (1963), Naturally Occurring Ring Compounds, Butterworths, London.

    Google Scholar 

  2. Trudgill, P. W. (1984), in Microbial Degradation of Organic Compounds, Gibson, D. T., ed., Marcel Dekker, NY, pp. 295–307.

    Google Scholar 

  3. Dobereiner, W. (1832), Ann. der Chem. 3, 141–146.

    Google Scholar 

  4. QO Chemicals (1989), Bulletin 203-D, QO Chemicals, West Lafayette, IN.

    Google Scholar 

  5. Dunlop, A. P. (1948), Ind. Eng. Chem. 40, 204–209.

    Article  CAS  Google Scholar 

  6. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–293.

    Article  CAS  Google Scholar 

  7. Bauer, K., Garbe, D., and Surburg, H. (1990), Common Fragrance and Flavor Materials, VCH, NY, p. 111.

    Google Scholar 

  8. Azhar, A. F., Bery, M. K., Colcord, A. R., Roberts, R. S., and Corbitt, G. V. (1981), Biotechnol. Bioeng. Symp. 11, 293–300.

    CAS  Google Scholar 

  9. Beall, D. S., Ohta, K., and Ingram, L. O. (1991), Biotechnol. Bioeng. 38, 296–303.

    Article  CAS  Google Scholar 

  10. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–195.

    CAS  Google Scholar 

  11. Taherzadeh, M. J., Niklasson, C., and Liden, G. (1999), Bioresour. Technol. 69, 59–66.

    Article  CAS  Google Scholar 

  12. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Liden, G. (1999), J. Biosci. Bioeng. 87, 169–174.

    Article  CAS  Google Scholar 

  13. Sanchez, B., and Bautista, J. (1988), Enzyme Microb. Technol. 10, 315–318.

    Article  CAS  Google Scholar 

  14. Zaldivar, J., Martinez, A., and Ingram, L. O. (1999), Biotechnol. Bioeng. 65, 24–33.

    Article  CAS  Google Scholar 

  15. Palmqvist, E., Almeida, J. S., and Hahn-Hagerdal, B. (1999), Biotechnol. Bioeng. 62, 447–454.

    Article  CAS  Google Scholar 

  16. Boopathy, R., Bokang, H., and Daniels, L. (1993), J. Ind. Microbiol. 11, 147–150.

    Article  CAS  Google Scholar 

  17. Boopathy, R., and Daniels, L. (1991), Curr. Microbiol. 23, 327–332.

    Article  CAS  Google Scholar 

  18. Brune, G., Schoberth, S. M., and Sahm, H. (1983), Appl. Environ. Microbiol. 46, 1187–1192.

    CAS  Google Scholar 

  19. Folkerts, M., Ney, U., Kneifel, H., Stackebrandt, E., Witte, E. G., Forstel, H., Schoberth, S. M., and Sahm, H. (1989), Syst. Appl. Microbiol. 11, 161–169.

    CAS  Google Scholar 

  20. Schoberth, S. M., Bubb, W. A., Chapman, B. E., and Kuchel, P. W. (1993), J. Microbiol. Methods 17, 85–90.

    Article  CAS  Google Scholar 

  21. Wang, P., Brenchley, J. E., and Humphrey, A. E. (1994), Biotechnol. Lett. 16, 977–982.

    Article  CAS  Google Scholar 

  22. Hong, S. W., Han, H. E., and Chae, K. S. (1981), J. Liquid Chromatogr. 4, 285–292.

    CAS  Google Scholar 

  23. Lee, B. U., Yu, B. S., Lee, K. J., and Hah, Y. C. (1985), Korea J. Microbiol. 23, 241–247.

    CAS  Google Scholar 

  24. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugan, K. T., and Ingram, L. O. (1991), Appl. Environ. Microbiol. 57, 2810–2815.

    CAS  Google Scholar 

  25. Ohta, K., Beall, D. S., Shanmugan, K. T., and Ingram, L. O. (1991), Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  26. Yomano, L. P., York, S. W., and Ingram, L. O. (1998), J. Ind. Microbiol. Biotechnol. 20, 132–138.

    Article  CAS  Google Scholar 

  27. Zaldivar, J., and Ingram, L. O. (1999), Biotechnol. Bioeng. 66, 203–210.

    Article  CAS  Google Scholar 

  28. Zaldivar, J., Martinez, A., and Ingram, L. O. (2000), Biotechnol. Bioeng. 68, 524–530.

    Article  CAS  Google Scholar 

  29. Yuan, J.-P., and Chen, F. (1999), Food Chem. 64, 423–427.

    Article  CAS  Google Scholar 

  30. Buszko, M. L., Buszko, D., and Wang, D. C. (1998), J. Magn. Reson. 131, 362–366.

    Article  CAS  Google Scholar 

  31. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Analy. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  32. Neuhaus, D. and Williamson, M. (1989), The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH, NY.

    Google Scholar 

  33. Vitrinskaya, A. M. and Soboleva, G. A. (1975), Appl. Biochem. Microbiol. 11, 579–585.

    Google Scholar 

  34. Banerjee, N., Bhatnagar, R., and Viswanathan, L. (1981), Appl. Microbiol. Biotechnol. 11, 226–228.

    Article  CAS  Google Scholar 

  35. Neuhauser, W., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1997), Biochem. J. 326, 683–692.

    CAS  Google Scholar 

  36. Hata, H., Shimizu, S., and Yamada, H. (1987), Agric. Biol. Chem. 51, 3011–3016.

    CAS  Google Scholar 

  37. Kataoka, M., Rohani, L. P. S., Wada, M., Kita, K., Yanase, H., Urabe, I., and Shimizu, S. (1998), Biosci. Biotechnol. Biochem. 62, 167–169.

    Article  CAS  Google Scholar 

  38. Kataoka, M., Rohani, L. P. S., Yamamoto, K., Wada, M., Kawabata, H., Kita, K., Yanase, H., and Shimizu, S. (1997), Appl. Microbiol. Biotechnol. 48, 699–703.

    Article  CAS  Google Scholar 

  39. Shimizu, S., Kataoka, M., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H. (1990), Appl. Environ. Microbiol. 56, 2374–2377.

    CAS  Google Scholar 

  40. Diaz de Villegas, M. E., Villa, P., Guerra, M., Rodriguez, E., Redondo, D., and Martinez, A. (1992), Acta Biotechnol. 12, 351–354.

    Article  CAS  Google Scholar 

  41. Weigert, B., Klein, K., Rizzi, M., Lauterbach, C., and Dellweg, H. (1988), Biotechnol. Lett. 10, 895–900.

    Article  CAS  Google Scholar 

  42. Han, T., Gonzales, R., Martinez, A., Rodriguez, M., Ingram, L. O., Preston, J. F., and Shanmugam, K. T. (2001), J. Bacteriol. 183, 2979–2988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Preston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, T., Buszko, M.L., Ingram, L.O. et al. Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98, 327–340 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:327

Index Entries

Navigation