Skip to main content
Log in

Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse is a potential lignocellulosic feedstock for ethanol production, since it is cheap, readily available, and has a high carbohydrate content. In this work, bagasse was subjected to steam explosion pretreatment with different impregnation conditions. Three parallel pretreatments were carried out, one without any impregnation, a second with sulfur dioxide, and a third with sulfuric acid as the impregnating agent. The pretreatments were performed at 205°C for 10 min. The pretreated material was then hydrolyzed using celluloytic enzymes. The chemical composition of the hydrolyzates was analyzed. The highest yields of xylose (16.2 g/100 g dry bagasse), arabinose (1.5 g/100 g), and total sugar (52.9 g/100 g) were obtained in the hydrolysis of the SO2-impregnated bagasse. The H2SO4-impregnated bagasse gave the highest glucose yield (35.9 g/100 g) but the lowest total sugar yield (42.3 g/100 g) among the three methods. The low total sugar yield from the H2SO4-impregnated bagasse was largely due to by-product formation, as the dehydration of xylose to furfural. Sulfuric acid impregnation led to a three-fold increase in the concentration of the fermentation inhibitors furfural and 5-hydroxymethylfurfural (HMF) and a two-fold increase in the concentration of inhibitory aliphatic acids (formic, acetic, and levulinic acids) compared to the other two pretreatment methods. The total content of phenolic compounds was not strongly affected by the different pretreatment methods, but the quantities of separate phenolic compounds were widely different in the hydrolyzate from the H2SO4-impregnated bagasse compared with the other two hydrolyzates. No major differences in the content of inhibitors were observed in the hydrolyzates obtained from SO2-impregnated and non-impregnated bagasse. The fermentability of all three hydrolyzates was tested with a xylose-utilizing Saccharomyces cerevisiae strain with and without nutrient supplementation. The hydrolyzates of SO2-impregnated and nonimpregnated bagasse showed similar fermentability, whereas the hydrolyzate of H2SO4-impregnated bagasse fermented considerably poorer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larsson S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N-O. (1999), Enzyme Microb. Technol. 24, 151–159.

    Article  CAS  Google Scholar 

  2. Teixeira, L.C., Linden, J.C., and Schroeder, H.A. (1999), Renewable Energy 16, 1070–1073.

    Article  CAS  Google Scholar 

  3. van Walsum, G.P., Allen, S.G., Spencer, M.J., Laser, M.S., Antal, M-J., and Lynd, L.R. (1996), Appl. Biochem. Biotechnol. 57–58, 157–170.

    Google Scholar 

  4. Kaar, W. E., Gutierrez, C. V., and Kinoshita, C. M. (1998), Biomass Bioenergy 14, 277–287.

    Article  CAS  Google Scholar 

  5. Saddler, J., Ramos, L., and Breul, C. (1993), in Bioconversion of Forest and Agricultural Residues, Saddler, J. N., ed., CAB International, Wallingford, pp. 73–91.

    Google Scholar 

  6. Gregg, D. and Saddler, J. N. (1996), Appl. Biochem. Biotechnol. 57–58, 711–727.

    Google Scholar 

  7. Stenberg, K., Tengborg, C., Galbe, M., and Zacchi, G. (1998), J. Chem. Technol. Biotechnol. 71, 299–308.

    Article  CAS  Google Scholar 

  8. Morjanoff, P. J. and Gray, P. P. (1987), Biotechnol. Bioeng. 29, 733–741.

    Article  CAS  Google Scholar 

  9. Fox, D. J., Morjanoff, P. J., Gray, P. P., Dunn, N. W., and Marsden, W. L. (1990), Aust. J. Biotechnol. 4, 1, 22–25.

    CAS  Google Scholar 

  10. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1996), Enzyme Microb. Technol. 19, 6, 470–476.

    Article  CAS  Google Scholar 

  11. Martín, C., Wahlbom, F., Galbe, M., Jönsson, L. J., and Hahn-Hägerdal, B. (2001), Proceedings of the 6th Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. VIII, Guaratingueta, S.P., Brazil, pp. 361–367.

  12. Delgenes, J. P., Moletta, R., and Navarro, J. M. (1996), Enzyme Microb. Technol. 19, 220–225.

    Article  CAS  Google Scholar 

  13. Jönsson L. J., Palmqvist E., Nilvebrant N.-O., and Hahn-Hägerdal B. (1998), Appl. Microbiol. Biotechnol. 49, 691–697.

    Article  Google Scholar 

  14. Zaldívar, J. and Ingram, L. O. (1999), Biotechnol. Bioeng. 66, 203–210.

    Article  Google Scholar 

  15. Larsson S., Quintana-Sáinz, A., Reimann A., Nilvebrant N.-O., and Jönsson L.J. (2000), Appl. Biochem. Biotechnol. 84–86, 617–632.

    Article  Google Scholar 

  16. Larsson S., Reimann A., Nilvebrant N.-O., and Jönsson L.J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  17. Palmqvist, E. and Hahn-Hägerdal, B. (2000), Bioresour. Technol. 74, 17–24.

    Article  CAS  Google Scholar 

  18. Larsson, S. (2000), Ph D thesis, Lund University, Sweden.

    Google Scholar 

  19. Martín, C., Galbe, M., Wahlbom, F., Hahn-Hägerdal, B, and Jönsson, L. J. (unpublished).

  20. Hägglund, E. (1951), Chemistry of Wood, Academic Press, NY.

    Google Scholar 

  21. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson S., Palmqvist, E., and Hahn-Hägerdal, B. (1998), Appl. Biochem. Biotechnol. 70–72, 3–15.

    Google Scholar 

  22. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–23.

    CAS  Google Scholar 

  23. Berghem, L. E. R. and Pettersson, L. G. (1974), Eur. J. Biochem. 46, 295–305.

    Article  CAS  Google Scholar 

  24. Eliasson, A., Christensson, C., Wahlbom, C. F., and Hahn-Hägerdal, B. (2000) Appl. Environ. Microbiol. 66, 3381–3386.

    Article  CAS  Google Scholar 

  25. Verduyn, C., Postma, E., Scheffers, W. A., and van Dijken, J.P. (1992) Yeast 8, 501–517.

    Article  CAS  Google Scholar 

  26. Singleton, V., Orthofer, R., and Lamuela-Raventós, R. (1999) Meth. Enzymol. 299, 152–178.

    CAS  Google Scholar 

  27. Sjöström, E. (1993) Wood Chemistry. Fundamentals and Applications, Academic Press, San Diego, CA.

    Google Scholar 

  28. Taherzadeh, M. J., Niklasson, C., and Lidén, G. (1997) Chem. Eng. Sci. 52, 15,2653–15,2659.

    Google Scholar 

  29. Sánchez, B. and Bautista, J. (1988) Enzyme Microb. Technol. 10, 315–318.

    Article  Google Scholar 

  30. Taherzadeh, M.J., Gustafsson, L., Niklasson, C., and Lidén, G. (1999) J. Biosci. Bioeng. 87, 169–174.

    Article  CAS  Google Scholar 

  31. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Lidén, G. (2000) Appl. Microbiol. Biotechnol. 53, 701–708.

    Article  CAS  Google Scholar 

  32. Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., and Lidén, G. (1997) Ind. Eng. Chem. Res. 36, 4659–4665.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, C., Galbe, M., Nilvebrant, NO. et al. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl Biochem Biotechnol 98, 699–716 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:699

Index Entries

Navigation