Skip to main content
Log in

Chemical pretreatments of corn stover for enhancing enzymatic digestibility

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover, the most abundant agricultural residue in Hungary, is a potential raw material for the production of fuel ethanol as a result of its high content of carbohydrates, but a pretreatment is required for its efficient hydrolysis. In this article, we describe the results using various chemicals such as dilute H2SO4, HCl, and NaOH separately as well as consecutively under relative mild conditions (120°C, 1h). Pretreatment with 5% H2SO4 or 5% HCl solubilized 85% of the hemicellulose fraction, but the enzymatic conversion of pretreated materials increased only two times compared to the untreated corn stover. Applying acidic pretreatment following a 1-d soaking in base achieved enzymatic conversion that was nearly the theoretical maximum (95.7%). Pretreatment with 10% NaOH decreased the lignin fraction >95%, increased the enzymatic conversion more than four times, and gave a 79.4% enzymatic conversion. However, by increasing the reaction time, the enzymatic degradability could also be increased significantly, using a less concentrated base. When the time of pretreatment was increased three times (0.5% NaOH at 120°C), the amount of total released sugars was 47.9 g from 100 g (dry matter) of untreated corn stover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stryer, L. (1988), Biochemistry, 3rd ed., W. H. Freeman & Co, NY, pp. 342–344.

    Google Scholar 

  2. Von Sivers, M. and Zacchi, G. (1996), Bioresour. Technol. 56, 131–140.

    Article  Google Scholar 

  3. Wymann, C. E. (1994), Bioresour. Technol. 50, 3–16.

    Article  Google Scholar 

  4. Pintér, L. and Kléger, A., eds., (2000), Statistical Annual Reviews of the Hungarian Agriculture (1996–1999), Hungarian Central Statistical Office, Budapest.

    Google Scholar 

  5. Fan, L. T., Lee, Y., and Gharpuray, M. M. (1982), Biochem. Eng. 23, 157–187.

    CAS  Google Scholar 

  6. Coughlan, M. P. (1992), Bioresour. Technol. 39, 107–115.

    Article  CAS  Google Scholar 

  7. Chang, M. M., Chou, T. Y. C., and Tsao, G. T. (1981), Biochem. Eng. 20, 15–42.

    Article  CAS  Google Scholar 

  8. Lin, K. W., Ladish, M. R., Schaefer, D. M., Noller, C. H., Lechtenberg, V., and Tsao, G. T. (1981), AIChE Symp. 207(77), 102–106.

    Google Scholar 

  9. Koullas, D. P., Christakopoulos, P., Kekos, D., Macris, B.J., and Koukios, E. G. (1992), Biotechnol. Bioeng. 39, 113–116.

    Article  CAS  Google Scholar 

  10. Millet, M. A., Baker, A. J., and Satter, L. D. (1976), Biotechnol. Bioeng. Symp. 5, 125–153.

    Google Scholar 

  11. Ghosh, P. and Singh, A. (1993), Appl. Microbiol. 39, 295–333.

    CAS  Google Scholar 

  12. Moyson, E., De Semt, K., and Verachtert, H. (1991), Biodegradation of Wheat Straw by Higher Fungi, International Symposium on Environmental Biotechnology, ref. No. 000147, Biotechnology Technical Information Service, Bangkok, Thailand.

    Google Scholar 

  13. Han, Y. W. (1978), Appl. Microbiol. 23, 119–153.

    CAS  Google Scholar 

  14. Stenberg, K., Tengborg, C., Galbe, M., and Zacchi, G. (1998), J. Chem. Technol. Biotechnol. 71, 299–308.

    Article  CAS  Google Scholar 

  15. Kaar, W. E., Gutierrez, C. V., and Kinoshita, C. M. (1998), Biomass Bioenergy 14, 277–287.

    Article  CAS  Google Scholar 

  16. Holtzapple, M. T., Jun, J., Ashok, G., Patibandala, S. L., and Dale, B. E. (1991), Appl. Biochem. Biotechnol. 28/29, 59–74.

    Google Scholar 

  17. Wilke, C. R., Yang, R. D., Sciamanna, A. F., and Freitas, R. P. (1981), Biotech. Bioeng. 23, 163–183.

    Article  CAS  Google Scholar 

  18. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997), Bioresour. Technol. 59, 129–136.

    Article  CAS  Google Scholar 

  19. MacDonald, D. G., Bakhshi, N. N., Mathews, J. F., Roychowdhury, A., Bajpai, P., and Moo-Young, M. (1983), Biotech. Bioeng. 25, 2067–2076.

    Article  CAS  Google Scholar 

  20. Elshafei, A. M., Vega, J. L., Kalsson, K. T., Clausen, E. C., and Gaddy, J. L. (1991), Bioresour. Technol. 35, 73–80.

    Article  CAS  Google Scholar 

  21. Kaar, W. E. and Holtzapple, M. T. (2000), Biomass and Bioenergy 18, 189–199.

    Article  CAS  Google Scholar 

  22. Hägglund, E. (1951), in Chemistry of Wood, Hägglund, E., ed., Academic, NY, pp. 375–389.

    Google Scholar 

  23. Miller, G. L. (1959), Anal. Chem. 31, 420–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Réczey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, E., Szengyel, Z. & Réczey, K. Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Appl Biochem Biotechnol 98, 73–87 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:73

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:73

Index Entries

Navigation