Skip to main content
Log in

Sustained strenuous exercise in sled dogs depresses three blood copper enzyme activities

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Studies show mixed conclusions about acute responses of copper status to strenuous exercise. Because copper function involves metalloenzyme activities, which might take days to change, the present study examined the response of three copper metalloenzyme activities to sustained strenuous exercise in sled dogs. A race lasting 12–15 d depressed activities for both plasma ceruloplasmin and erythrocyte superoxide dismutase in dogs consuming commercial dog foods and meats. A shorter, 3-d training run for dogs fed a commercial balanced diet also depressed ceruloplasmin activities but not superoxide dismutase activities. Dogs fed the same diet but that did not run showed no changes in either parameter. Activities of a third copper enzyme, plasma diamine oxidase, also decreased after a 3-d training run. In summary, blood activities of three copper enzymes were depressed by sustained strenuous exercise in sled dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. C. Lukaski, Micronutrients (magnesium, zinc, and copper): are mineral supplements needed for athletes?, Int. J. Sport Nutr. 5, S74-S83 (1995).

    PubMed  Google Scholar 

  2. J. M. C. Howell and J. M. Gawthorne, Copper in Animals and Man, CRC, Boca Raton, FL (1987).

    Google Scholar 

  3. I. Fridovich, Superoxide radical and superoxide dismutases, Annu. Rev. Biochem. 64, 97–112 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. A. Hasegawa, S. Suzuki, Y. Matsumotot, et al., In vivo fatiguing contraction of rat diaphragm produces hydroxyl radicals, Free Radical Biol. Med. 22, 349–354 (1997).

    Article  CAS  Google Scholar 

  5. M. Kanter, Free radicals and exercise: effects of nutritional antioxidant supplementation, Exerc. Sports Sci. Rev. 23, 375–397 (1995).

    Article  CAS  Google Scholar 

  6. J. Karlsson, Antioxidants and Exercise, Human Kinetics, Champaign, IL (1997).

    Google Scholar 

  7. R. A. Anderson, N. A. Bryden, M. M. Polansky, et al., Acute exercise effects on urinary losses and serum concentrations of copper and zinc of moderately trained and untrained men consuming a controlled diet, Analyst 120, 867–870 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. O. I. Aruoma, T. Reilly, D. MacLaren, et al., Iron, copper and zinc concentrations in human sweat and plasma; the effect of exercise, Clin. Chim. Acta 177, 81–87 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. D. Bordin, L. Sartorelli, G. Bonanni, et al., High intensity physical exercise induced effects on plasma levels of copper and zinc, Biol. Trace Element Res. 36, 129–134 (1993).

    CAS  Google Scholar 

  10. W. W. Campbell and R. A. Anderson, Effects of aerobic exercise and training on the trace minerals chromium, zinc and copper, Sports Med. 4, 9–18 (1987).

    PubMed  CAS  Google Scholar 

  11. I. Cordova, M. Gimenez, and J. F. Escanero, Effect of swimming to exhaustion, at low temperatures, on serum Zn, Cu, Mg and Ca in rats, Physiol. Behav. 48, 595–598 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. P. A. Deuster, S. B. Kyle, A. Singh, et al., Exercise-induced changes in blood minerals, associated proteins and hormones in women athletes, J. Sports Med. Phys. Fitness 31, 552–560 (1991).

    PubMed  CAS  Google Scholar 

  13. M. Marrella, F. Guerrini, P. L. Solero, et al., Blood copper and zinc changes in runners after a marathon, J. Trace Elements Electrolytes Health Dis. 7, 248–250 (1993).

    CAS  Google Scholar 

  14. R. A. DiSilvestro, A. A. Jones, D. Smith, et al., Plasma diamine oxidase activities in renal dialysis patients, a human with spontaneous copper deficiency and marginally copper deficient rats, Clin. Biochem. 30, 559–563 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. R. A. DiSilvestro and J. T. Marten, Effects of inflammation and copper intake on rat liver and erythrocyte Cu−Zn superoxide dismutase activity levels, J. Nutr. 120, 1223–1227 (1990).

    PubMed  CAS  Google Scholar 

  16. A. A. Jones, R. A. DiSilvestro, M. Coleman, et al., Copper supplementation of adult men: effects on blood copper enzyme activities & indicators of cardiovascular disease risk, Metabolism 46, 1380–1383 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. E. Rice, Standardization of ceruloplasmin activity in terms of International Enzyme Units, Anal. Biochem. 3, 452–456 (1962).

    Article  PubMed  CAS  Google Scholar 

  18. R. A. DiSilvestro, T. L. Foltz, J. Davidson, et al., Effects of copper intake and exercise training on copper antioxidant enzyme activities in rats, J. Trace Elements Exp. Med. 5, 221–225 (1992).

    CAS  Google Scholar 

  19. M. B. Harris and J. W. Starnes, Effects of body temperature during exercise training on myocardial adaptations, Am. J. Physiol. (Heart. Circ. Physiol.) 280, H2271-H2280 (2001).

    CAS  Google Scholar 

  20. H. C. Lukaski, Effects of exercise training on human copper and zinc nutriture, Adv. Exp. Med. Biol. 258, 163–170 (1989).

    PubMed  CAS  Google Scholar 

  21. S. Oh-ishi, T. Kizaki, J. Nagasawa, et al., Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle, Clin. Exp. Pharmacol. Physiol. 24, 326–332 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. I. Pereira, L. F. Rosa, D. A., Safi, et al., Antioxidant enzyme activities in the lymphoid organs and muscles of rats fed fatty acids-rich diets subjected to prolonged physical exercise-training, Physiol. Behav. 56, 1049–1055 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. A. Resina, S. Fedi, L. Gatteschi, et al., Comparison of some serum copper parameters in trained runners and control subjects, Int. J. Sports Med. 11, 58–60 (1990).

    PubMed  CAS  Google Scholar 

  24. Resina, L. Gatteschi, M. G. Rubenni, et al., Comparison of some serum copper parameters in trained professional soccer players and control subjects, J. Sports Med. Phys. Fitness 31, 413–416 (1991).

    PubMed  CAS  Google Scholar 

  25. J. Prohaska, Changes in tissue growth, concentrations of copper, iron cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice, J. Nutr. 113, 2048–2058 (1983).

    PubMed  CAS  Google Scholar 

  26. K. Takagi, M. Nakao, and Y. Ogura, Sensitive colorimetric assay of serum diamine oxidase, Clin. Chim. Acta 226, 67–75 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. W. A. Widicus and J. R. Kirk, High pressure liquid chromatographic determination of vitamins A and E in cereal products, J. Assoc. Offic. Anal. Chem. 62, 637–641 (1979).

    CAS  Google Scholar 

  28. T. L. Wagner, R. A. DiSilvestro, and D. M. Medeiros, Marginal copper intake and inflammation effects on copper enzyme activities in rats, J. Trace Elements Exp. Med. 8, 41–46 (1995).

    CAS  Google Scholar 

  29. A. I. Moldoveanu, R. J. Shephard, and P. N. Shek, The cytokine response to physical activity and training, Sports Med 31, 115–144 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. R. A. DiSilvestro and R. J. Cousins, Glucocorticoid independent mediation of interleukin-1 induced changes in serum zinc and liver metallothionein, Life Sci. 35, 2113–2118 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. R. A. DiSilvestro and R. J. Cousins, Mediation of endotoxin induced changes in zinc metabolism, Am. J. Physiol. 47, E436-E441 (1984).

    Google Scholar 

  32. R. J. Cousins, Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin, Physiol. Rev. 65, 238–308 (1985).

    PubMed  CAS  Google Scholar 

  33. D. G. Rowbottom and K. J. Green, Acute exercise effects on the immune system, Med. Sci. Sports Exerc. 32, S396-S405 (2001).

    Google Scholar 

  34. R. A. DiSilvestro, Effects of copper intake, inflammation and copper injection on rat serum ceruloplasmin activity levels, Nutr. Res. 10, 355–358 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiSilvestro, R.A., Hinchcliff, K.W. & Blostein-Fujii, A. Sustained strenuous exercise in sled dogs depresses three blood copper enzyme activities. Biol Trace Elem Res 105, 87–96 (2005). https://doi.org/10.1385/BTER:105:1-3:087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:105:1-3:087

Index Entries

Navigation