Skip to main content
Log in

Spatial distribution of lead in enamel and coronal dentine of wistar rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead is one of the most hazardous environmental toxins known. The assessment of lead in dental hard tissues is important in the understanding of its to xic effects on oral tissues and in estimating exposure and body burden in individuals exposed to lead from the environment. However, current information on the uptake and distribution of lead in enamel and dentine is limited. The aim of this project was to study, at high resolution, the spatial distribution of lead in enamel and coronal dentine using an experimental rat model. A dose of 40 mg/L of lead nitrate was administered to pregnant femake rats during the periods of gestation and lactation through drinking water. First mandibular molar teeth were removed from their 15-d-old pups and the distribution of lead was studied using a nuclear microprobe (NMP). The distribution of lead in enamel and coronal dentine showed four distinct zones with significantly different mean lead concentrations (p<0.05). High levels of lead were observed in the superficial regions of enamel and in the dentine directly adjacent to the pulp. Additionally, the results confirmed that the NMP is capable of mapping the distribution of lead in teeth at micron resolutions with a detection limit of approx 1 μg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. L. Needleman and D. Bellinger, The health effects of low level exposure to lead, Annu. Rev. Public Health 12, 111–140 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. L. Jarup, Hazards of heavy metal contamination, Br. Med. Bull. 68, 167–182 (2003).

    Article  PubMed  Google Scholar 

  3. J. G. Pounds, G. J. Long, and J. F. Rosen, Cellular and molecular toxicity of lead in bone, Environ. Health Perspect. 91, 17–32 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. W. H. Bowen, Exposure to metal ions and susceptibility to dental caries, J. Dent. Educ. 65, 1046–1053 (2001).

    PubMed  CAS  Google Scholar 

  5. G. E. Watson, B. A. Davis, R. F. Raubertas, S. K. Pearson, and W. H. Bowen, Influence of maternal lead ingestion on caries in rat pups, Nat. Med. 3, 1024–1025 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. H. L. Needleman, C. Gunnoe, A. Leviton, et al., Deficits in psychologic and classroom performance of children with elevated dentine lead levels, N. Engl. J. Med. 300, 689–695 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. M. B. Rabinowitz, J. D. Wang, and W. T. Soong, Dentine lead and child intelligence in Taiwan, Arch. Environ. Health 46, 351–360 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. G. Winneke, L. Altmann, U. Kramer, et al., Neurobehavioral and neurophysiological observations in six year old children with low lead levels in East and West Germany, Neurotoxicology 15, 705–713 (1994).

    PubMed  CAS  Google Scholar 

  9. M. Smith, T. Delves, R. Lansdown, B. Clayton, and P. Graham, The effects of lead exposure on urban children: the Institute of Child Health/Southampton Study, Dev. Med. Child. Neurol. 47(Suppl.), 1–54 (1983).

    CAS  Google Scholar 

  10. J. Begerow, I. Freier, M. Turfeld, U. Kramer, and L. Dunemann, Internal lead and cadmium exposure in 6-year-old children from western and eastern Germany, Int. Arch. Occup. Environ. Health 66, 243–248 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. S. R. Grobler, R. J. Rossouw, and D. Kotze, Lead in teeth of weanling rats received via the maternal drinking water, Arch. Oral. Biol. 30, 509–511 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. S. R. Grobler, R. J. Rossouw, T. J. v. W. Kotze, and I. A. Stander, The effect of airborne lead on lead levels of blood, incisors and alveolar bone of rats, Arch. Oral Biol. 36, 357–360 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. M. Kaplan, H. J. Persie, and M. Jeffcoat, Lead content of blood and deciduous teeth in lead-exposed Beagle pups, in Low Level Lead Exposure, H. L. Needleman, ed., Raven, New York, pp. 221–230 (1980).

    Google Scholar 

  14. R. D. Evans, P. Richner, and P. M. Outridge, Micro-spatial variations of heavy metals in the teeth of walrus as determined by laser ablation ICP-MS: the potential for reconstructing a history of metal exposure, Arch. Environ. Contam. Toxicol. 28, 55–60 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. P. Budd, J. Montgomery, A. Cox, P. Krause, B. Barreiro, and R. G. Thomas, The distribution of lead within ancient and modern human teeth: implications for long-term and historical exposure monitoring, Sci. Total Environ. 220, 121–136 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. J. E. Ericson, Enamel lead biomarker for prenatal exposure assessment, Environ. Res. 87, 136–140 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. M. M. Hoffman and I. Schour, Quantitative studies in the development of the rat molar. I. The growth pattern of the primary and secondary dentin (from birth to 500 days of age), Anat. Res. 78, 233–251 (1940).

    Article  Google Scholar 

  18. B. Momcilovic, Lead metabolism in lactation, Experimentia 35, 517–518 (1979).

    Article  CAS  Google Scholar 

  19. C. G. Ryan, D. N. Jamieson, W. L. Griffin, G. Cripps, and R. Szymanski, The new CSIRO-GEMOC nuclear microprobe: first results, performance and recent applications, Nucl. Instrum. Methods B 181, 12–19 (2001).

    Article  CAS  Google Scholar 

  20. C. G. Ryan, Developments in dynamic analysis for quantitative PIXE true elemental imaging, Nucl. Instrum. Methods B 181, 170–179 (2001).

    Article  CAS  Google Scholar 

  21. S. R. Malik and J. H. Fremlin, A study of lead distribution in human teeth using charged particle activation analysis, Caries Res. 8, 283–292 (1974).

    Article  PubMed  CAS  Google Scholar 

  22. M. A. Crenshaw and Y. Takano, Mechanisms by which the enamel organ controls calcium entry into the developing enamel, J. Dent. Res. 61(Special Issue), 1574–1579 (1982).

    CAS  Google Scholar 

  23. T. Aoba and E. C. Moreno, Changes in the nature and composition of enamel mineral during porcine amelogenesis, Calcif. Tissue Int. 47, 356–364 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. N. G. Purchase and J. E. Fergusson, Lead in teeth: the influence of the tooth type and the sample within a tooth on lead levels, Sci. Total Environ. 52, 239–250 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. A. R. Ten Cate, Oral Histology: Development, Structure and Function, 5th ed., Mosby, St. Louis, MO, pp. 151 (1998).

    Google Scholar 

  26. P. Herr, J. Holz, and L. J. Baume, Mantle dentine in man—a quantitative microradiographic study, J. Biol. Bucc. 14, 139–146 (1986).

    CAS  Google Scholar 

  27. U. Stratmann, K. Schaarschmidt, H. P. Wiesmann, U. Plate, H. J. Hohling, and T. Szuwart, The mineralisation of mantle dentine and of circumpulpal dentine in the rat: an ultrastructural and element-analytical study, Anat. Embryol. 195, 289–297 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. S. R. Grobler, F. S. Theunissen, and T. J. Kotze, The relation between lead concentrations in human dential tissues and in blood, Arch. Oral. Biol. 45, 607–609 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. L. G. Petersson, A. Lodding, and G. Koch, Elemental microanalysis of enamel and dentin by secondary ion mass spectrometry (SIMS), Swed. Dent. J. 2, 41–54 (1978).

    PubMed  CAS  Google Scholar 

  30. D. Kang, D. Amarasiriwardena, and A. H. Goodman, Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp, Anal. Bioanal. Chem. 378, 1608–1615 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, M., Chan, S.W.Y., Ryan, C.G. et al. Spatial distribution of lead in enamel and coronal dentine of wistar rats. Biol Trace Elem Res 105, 159–170 (2005). https://doi.org/10.1385/BTER:105:1-3:159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:105:1-3:159

Index Entries

Navigation