Skip to main content
Log in

Influence of antimonite, selenite, and mercury on the toxicity of arsenite in primary rat hepatocytes

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The long-term toxicity of arsenic (As) as a result of exposure to contaminated drinking water might be modified by coinciding exposures to elements like selenium, antimony, or mercury. In this study the influence of tetravalent selenite, trivalent antimonite, and divalent mercury was investigated in vitro using cultured primary rat hepatocytes. The cell vitalty was assessed in the 3-[4,5-dimethylthiazol-2-yl-2,5-diphenyltetra-zolium bromide] (MTT), assay with concurrent exposures of the cells to up to 50 μM sodium arsenite(III) and a potential modifier [50 μM sodium(IV) selenite, 10 μM antimony(III) chloride, 25 μM mercuric(II) chloride], which indicated an additive increase in the combined cytotoxicity. Sodium arsenite was tested for genotoxicity in the micronucleus test in a concentration range of 0.25 up to 7.5 μM. In this range, the MTT conversion was at least 80%, indicating high cell viability. A dose-dependent induction of micronuclei was observed. The lowest concentration causing a significantly elevated frequency of micronuclei was 1 μM As (p<0.05). A significant influence (i.e., reduction of the combined genotoxicity as a result of the presence of a potential modifier) was only observed for 10 and 25 μM antimony chloride (p<0.05, Fisher's exact test). The metabolic methylation of arsenite was not affected by concurrent incubation with any of the potential modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Smith, E. O. Lingas, and M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency, Bull. WHO 78, 1093–1103 (2000).

    PubMed  CAS  Google Scholar 

  2. A. Basu, P. Ghosh, J. K. Das, A. Banerjee, K. Ray, and A. K. Giri. Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal, India: a comparative study in three cell types, Cancer Epidemiol. Biomarkers Prev. 13(5), 820–827 (2004).

    PubMed  CAS  Google Scholar 

  3. V. Mart Chilean population environmentally exposed to arsenic, Mutat. Res. 564, 65–75 (2004).

    Google Scholar 

  4. V. Mart environmentally exposed to arsenic in Northern Chile, Toxicol. Lett. 155, 319–327 (2005).

    Article  CAS  Google Scholar 

  5. J. Mahata, A. Basu, S. Ghoshal, et al., Chromosomal aberrations and sister chromatid exchanges in individuals exposed to arsenic through drinking water in West Bengal, India, Mutat. Res. 534, 133–143 (2003).

    PubMed  CAS  Google Scholar 

  6. T. W. Gebel, Arsenic and drinking water contamination, Science 283, 1458–1459 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. R. R. Engel, C. Hopenhayn-Rich, O. Receveur, and A. H. Smith, Vascular effects of chronic arsenic exposure: a review, Epidemiol. Rev. 16, 184–209 (1994).

    PubMed  CAS  Google Scholar 

  8. J. L. Valentine, M. E. Cebrian, G. G. Garcia-Vargas, et al., Daily selenium intake estimates for residents of arsenic-endemic areas, Environ. Res. 64, 1–9 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. T. Gebel, Confounding variables in the environmental toxicology of arsenic, Toxicology 144, 155–162 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. L. Beckman and I. Nordenson, Interaction between some common genotoxic agents, Mum. Hered. 36, 397–401 (1986).

    Article  CAS  Google Scholar 

  11. T. Gebel, Suppression of arsenic-induced chromosome mutagenicity by antimony, Mutat. Res. 412, 213–218 (1998).

    PubMed  CAS  Google Scholar 

  12. T. Gebel, S. Christensen, and H. Dunkelberg, Comparative and environmental genotoxicity of antimony and arsenic, Anticancer Res 17, 2603–2607 (1997).

    PubMed  CAS  Google Scholar 

  13. D. J. Thomas, M. Styblo, and S. Lin, The cellular metabolism and systemic toxicity of arsenic, Toxicol. Appl. Pharm. 176, 127–144 (2001).

    Article  CAS  Google Scholar 

  14. D. J. Thomas, S. B. Waters, and M. Styblo, Elucidating the pathway for arsenic methylation, Toxicol. Appl. Pharmacol. 198, 319–326 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. H. Vasken Aposhian, R. A. Zakharyan, M. D. Avram, A. Sampayo-Reyes, and M. L. Wollenberg, A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species, Toxicol. Appl. Pharmacol. 198, 327–335 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. M. Styblo, L. M. Del Razo, L. Vega, et al., Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells, Arch. Toxicol. 74, 289–299 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. M. J. Mass, A. Tennant, B. C. Roop, et al., Methylated trivalent arsenic species are genotoxic, Chem. Res. Toxicol. 14, 355–361 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. A. D. Kligerman, C. L. Doerr, A. H. Tennant, et al., Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations, Environ. Mol. Mutagen 42, 192–205 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. K. Kuroda, K. Yoshida, M. Yoshimura, et al., Genotoxicity of dimethylarsinous acid: high induction of tetraploids, Appl. Organometal. Chem. 19, 221–225 (2005).

    Article  CAS  Google Scholar 

  20. K. Mure, A. N. Uddin, L. C. Lopez, M. Styblo, and T. G. Rossman, Arsenite induces delayed mutagenesis and transformation in human osteosarcoma cells at extremely low concentrations, Environ. Mol. Mutagen. 41, 322–331 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. T. W. Gebel, Arsenic methylation is a process of detoxification through accelerated excretion, Int. J. Hyg. Environ. Health 205, 505–508 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. J. De Kimpe, R. Cornelis, and R. Vanholder, In vitro methylation of arsenite by rabbit liver cytosol: effect of metal ions, metal chelating agents, methyltransferase inhibitors and uremic toxins, Drug Chem. Toxicol. 22, 613–628 (1999).

    PubMed  Google Scholar 

  23. M. Styblo, M. Delnomdedieu, and D. J. Thomas, Mono-and dimethylation of arsenic in rat liver cytosol in vitro, Chem.-Biol. Interact. 99, 647–164 (1996).

    Article  Google Scholar 

  24. L. L. Hall, S. E. George, M. J. Kohan, M. Styblo, and D. J. Thomas, In vitro methylation of inorganic arsenic in mouse intestinal cecum, Toxicol. Appl. Pharmacol. 147, 101–109 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. E. M. Kenyon, M. F. Hughes, and O. A. Levander, Influence of dietary selenium on the disposition of arsenate in the female B6C3F1 mouse, J. Toxicol. Environ. Health 51, 279–299 (1997).

    Article  PubMed  CAS  Google Scholar 

  26. R. Bailly, R. Lauwerys, J. P. Buchet, P. Mahieu, and J. Konings, Experimental and human studies on antimony metabolism: their relevance for the biological monitoring of workers exposed to inorganic antimony, Br. J. Ind. Med. 48, 93–97 (1991).

    PubMed  CAS  Google Scholar 

  27. N. Schaumlöffel and T. Gebel, Heterogeneity of the DNA damage provoked by antimony and arsenic, Mutagenesis 13, 281–286 (1998).

    Article  PubMed  Google Scholar 

  28. T. W. Gebel, R. H. H. Suchenwirth, C. Bolten, and H. Dunkelberg, Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure, Environ. Health Perspect. 106, 33–39 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. T. Gebel, C. Behmke, and H. Dunkelberg, Einfluß einer geogenen Exposition von Quecksilber, Arsen und Antimon auf die Körperbelastung—eine Biomonitoring-Studie, Zentralbl. Hyg. Umweltmed. 201, 103–120 (1998).

    PubMed  CAS  Google Scholar 

  30. P. O. Seglen, Preparation of isolated rat liver cells, Methods Cell. Biol. 13, 29–83 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. P. M. Eckl and I. Raffelsberger, The primary rat hepatocyte micronucleus assay: general features, Mutat. Res. 392, 117–124 (1997).

    PubMed  CAS  Google Scholar 

  32. K. Müller-Tegethoff, B. Kersten, P. Kasper, and L. Müller, Application of the in vitro rat hepatocyte micronucleus assay in genetic toxicology testing, Mutat. Res. 392, 125–138 (1997).

    PubMed  Google Scholar 

  33. M. Fenech, The cytokinesis-block technique: a detailed description of the method and its application to genotoxicity studies in human populations, Mutat. Res. 285, 35–44 (1993).

    PubMed  CAS  Google Scholar 

  34. M. Fenech, The advantages and disadvantages of the cytokinesis-block micronucleus method, Mutat. Res. 397, 11–18 (1997).

    Google Scholar 

  35. M. Kirsch-Volders, T. Sofuni, M. Aardema, et al., Report from the in vitro micronucleus assay working group, Environ. Mol. Mutagen 35, 167–172 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. J. Feldmann, V. W. Lai, W. R. Cullen, M. Ma, X. Lu, and X. C. Le, Sample preparation and storage can change arsenic speciation in human urine, Clin. Chem. 45, 1988–1997 (1999).

    PubMed  CAS  Google Scholar 

  37. Z. Gregus, A. Gyurasics, and I. Csanaky, Biliary and urinary excretion of inorganic arsenic: monomethylarsonous acid as a major biliary metabolite in rats, ToxicolScci. 56, 18–25 (2000).

    Article  CAS  Google Scholar 

  38. S. Biswas, G. Talukder, and A. Sharma, Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo, Mutat. Res. 441, 155–160 (1999).

    PubMed  CAS  Google Scholar 

  39. K. T. Kitchin, Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites, Toxicol. Appl. Pharmacol. 172, 249–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. J. P. Buchet and R. Lauwerys, Study of inorganic arsenic methylation by rat liver in vitro: relevance for the interpretation of observations in man, Arch. Toxicol. 57, 125–129 (1985).

    Article  PubMed  CAS  Google Scholar 

  41. M. Styblo and D. J. Thomas, Selenium modifies the metabolism and toxicity of arsenic in primary rat hepatocytes, Toxicol. Appl. Pharmacol. 172, 52–61 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. F. S. Walton, S. B. Waters, S. L. Jolley, E. L. LeCluyse, D. J. Thomas, and M. Styblo, Selenium compounds modulate the activity of recombinant rat As-III-methyltransferase and the methylation of arsenite by rat and human hepatocytes, Chem. Res. Toxicol. 16, 261–265 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. I. Csanaky and Z. Gregus, Effect of phosphate transporter and methylation inhibitor drugs on the disposition of arsenate and arsenite in rats, Toxicol. Sci. 63, 29–36 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasgekar, N., Beck, J.P., Dunkelberg, H. et al. Influence of antimonite, selenite, and mercury on the toxicity of arsenite in primary rat hepatocytes. Biol Trace Elem Res 111, 167–183 (2006). https://doi.org/10.1385/BTER:111:1:167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:167

Index Entries

Navigation