Skip to main content
Log in

Metabolism of subtoxic level of selenite by double-perfused small intestine in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Intestinal metabolism of the subtoxic level of selenite in rats was investigated using a double-perfusion system, which is an in situ, in vitro preparation in which the intestinal lumen and its vasculature are perfused simultaneously. The toxicity of sodium selenite was determined by inhibition of 3-O-methyl glucose (3MG) absorption and by histological examination. Levels of 1.2 mM selenite were required to significantly (p<0.05) reduce 3MG intestinal absorption (58±11%, mean±SD). Cation-exchange chromatography was used to determine the chemical forms of Se from selenite after using luminal concentrations of 1–200 µM in vascular perfusates. The chemical forms were selenite, selenodiglutathione (GS-Se-SG), mixed selenoglutathione plus cysteine (GS-Se-CYS), selenodicysteine (CYS-Se-CYS), protein-bound Se, and unidentified selenocompounds. Selenite was the predominant selenocompound found in vascular perfusate, but protein-bound Se was the predominant metabolite from selenite present in the vascular effuents. There was a corresponding increase of all metabolites with increased levels of selenite with time of absorption, but not with increased concentration of luminal selenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. D. Magg, J. S. Orsborn, and J. R. Clopton, The effect of sodium selenite on cattle, Am. J. Vet. Res. 21, 1049–1053 (1960).

    Google Scholar 

  2. H. E. Ganther, Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase, Biochemistry 10, 4089–4098 (1971).

    Article  PubMed  CAS  Google Scholar 

  3. H. E. Ganther and C. Corcoran, Selenotrisulfide. II, Cross-linking of reduced pancreatic ribonuclease with selenium, Biochemistry 8, 2557–2563 (1969).

    Article  PubMed  CAS  Google Scholar 

  4. G. D. Frenkel and D. Falvey, Evidence for the involvement of sulfhydryl compounds in the inhibition of cellular DNA synthesis by selenite, Mol. Pharmacol. 34, 573–577 (1988).

    PubMed  CAS  Google Scholar 

  5. G. Batist, Selenium: preclinical studies of anticancer therapeutic potential, Biol. Trace Element Res. 15, 223–229 (1988).

    Article  CAS  Google Scholar 

  6. K. A. Poirier and J. A. Milner, Factors influencing the antitumorigenic properties of selenium in mice, J. Nutr. 113, 2147–2154 (1983).

    PubMed  CAS  Google Scholar 

  7. M. A. Beilstein and P. D. Whanger, Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins, J. Nutr. 116, 1701–1719 (1986).

    PubMed  CAS  Google Scholar 

  8. M. A. Beilstein and P. D. Whanger, Chemical forms of selenium in rat tissues after administration of selenite or selenomethionine, J. Nutr. 116, 1711–1719 (1986).

    PubMed  CAS  Google Scholar 

  9. M. A. Beilstein and P. D. Whanger, Glutathione peroxidase activity and chemical forms of selenium in tissue of rats given selenite or selenomethionine, J. Inorg. Biochem. 33, 31–46 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. H. J. Dowling, E. G. Offenbacher, and F. X. Pi-Sunyer, Absorption of inorganic, trivalent chromium from the vascularly perfused rat small intestine, J. Nutr. 119, 1138–1145 (1989).

    PubMed  CAS  Google Scholar 

  11. K. T. Smith, R. J. Cousins, B. L. Silbon, et al., Zinc absorption and metabolism by isolated vascularly perfused rat intestine, J. Nutr. 108, 1849–1857 (1978).

    PubMed  CAS  Google Scholar 

  12. L. M. Cummins and E. T. Kimura, Safety evaluation of selenium sulfide antidandruff shampoos, Toxicol. Appl. Pharmacol. 20, 89–96 (1971).

    Article  PubMed  CAS  Google Scholar 

  13. I. P. Pletnikova, Biological effects and safe concentration of selenium in drinking water, Hyg. Sanit. 35, 175–180 (1970).

    Google Scholar 

  14. Y. C. Park and P. D. Whanger, Toxicity, metabolism and absorption of selenite by isolated rat hepatocytes, Toxicology 100, 151–162 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. P. D. Whanger, S. C. Vendeland, P.-C. Park, et al., Metabolism of subtoxic levels of selenium in animals and humans, Ann. Clin. Lab. Sci. 26, 99–113 (1996).

    PubMed  CAS  Google Scholar 

  16. K. P. McConnell and G. J. Cho, Transmucosal movement of selenium, Am. J. Physiol. 208, 1191–1195 (1965).

    PubMed  CAS  Google Scholar 

  17. T. Humaloja and H. M. Mykkanen, Intestinal absorption of 75Se-labeled sodium selenite and selenomethionine in chicks: effects of time, segment, selenium concentration and method of measurement, J. Nutr. 116, 142–148 (1986).

    PubMed  CAS  Google Scholar 

  18. H. E. Ganther, Selenotrisulfides: formation by the reaction of thiols with seleniuos acid, Biochemistry 7, 2898–2905 (1968).

    Article  PubMed  CAS  Google Scholar 

  19. H. E. Ganther, Formation of dimethyl selenide and trimethylselenonium from selenobetaine in the rat, Arch. Biochem. Biophys. 247, 12–19 (1986).

    Article  PubMed  Google Scholar 

  20. G. D. Frenkel, D. Falvey, and C. MacVicar, Products of the reaction of selenite with intracellular sulfhydryl compounds, Biol. Trace Element Res. 30, 9–18 (1991).

    CAS  Google Scholar 

  21. M. A. Ilian and P. D. Whanger, In vitro metabolism of 75Se-selenite and 75Se-selenomethionine in chick blood, J. Trace Elements Electrolytes Dis. 3, 9–16 (1989).

    CAS  Google Scholar 

  22. J. T. Deagen, J. A. Butler, M. A. Beilstein, et al., Effects of dietary selenite, selenocysteine and selenomethionine on selenocysteine lyase and glutathione peroxidase activities and on selenium levels in rat tissues, J. Nutr. 117, 91–98 (1987).

    PubMed  CAS  Google Scholar 

  23. I. H. Waschulewski and R. A. Sunde, Effects of dietary methionine on tissue selenium and glutathione peroxidase (EC 1.11.1.9) activity in rats given selenomethionine, Br. J. Nutr. 60, 57–68 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. E. C. Wilhelmsen, W. C. Hawkes, and A. L. Tappel, Substitution of selenocysteine for cysteine in a reticulocyte lysate proitein synthesis system, Biol. Trace Element Res. 7, 141–151 (1985).

    Article  CAS  Google Scholar 

  25. G. V. Kryukov, S. Castellano, S. V. Novoselov, et al., Characterization of mammalian selenoproteins, Science 300, 1439–1443 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. N. S. Alabi, M. A. Beilstein, and P. D. Whanger, Chemical forms of selenium present in rat and ram spermatozoa: in vivo and in vitro studies, Biol. Trace Element Res. 76, 161–173 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, YC., Kim, JB., Heo, Y. et al. Metabolism of subtoxic level of selenite by double-perfused small intestine in rats. Biol Trace Elem Res 98, 143–157 (2004). https://doi.org/10.1385/BTER:98:2:143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:2:143

Index Entries

Navigation