Skip to main content
Log in

Biochemical and morphological characteristics of selenite-induced apoptosis in human hepatoma hep G2 cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is a cellular growth inhibitor in many mammary tumor cells. To comprehend the mechanism for the selenium-induced cell death, we examined the effects of sodium selenite, which has been one of the most extensively investigated selenium compounds, in human hepatoma Hep G2 cells.

Cell viability gradually decreased after treatment with sodium selenite within the concentration range of 10–50 µM. Low (10 µM) selenite has shown a high-percentage laddering pattern compared to the high (25 µM) cytotoxic selenium concentration in agarose gel electrophoresis. G2M-phase enrichment was also concentration dependent. The most consistent transmission electron microscopic finding was the existence of large lysosomes.

Based on these data, we hypothesize that sodium selenite predominantly shows its apoptotic effect over hydrogen selenite accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lu, C. Jiang, M. Kaeck, et al., Dissociation of the genotoxic and growth inhibition effects of selenium, Biochem. Pharmacol. 50, 213–219 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. D. Medina and D. G. Morrison, Current ideas on selenium as a chemoprevent agent, Pathol. Immunopathol. Res. 7, 187–199 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. J. Lu, M. Kaeck, C. Jiang, et al., Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells, Biochem. Pharmacol. 47, 1531–1535 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. H. M. Shen, C. F. Yang, and C. N. Ong, Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells, Int. J. Cancer 81, 820–828 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. M. S. Stewart, R. L. Davis, L. P. Walsh, et al., Induction of differentiation and apoptosis by sodium selenite in human colonic carcinoma cells (HT29), Cancer Lett. 117, 35–40 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. H. J. Thompson, A. Wilson, J. Lu, et al., Comparison of the effects of an organic and an inorganic form of selenium on a mammary carcinoma cell line, Carcinogenesis 15, 183–186 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. D. T. Vistica, P. Skehan, D. Scudiero, et al., Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production, Cancer Res. 51, 2515–2520 (1991).

    PubMed  CAS  Google Scholar 

  8. M. F. McCartly, Selenium, calcium channel blockers, and cancer-risk—the yin and yang of apoptosis, Med. Hypotheses 50, 423–433 (1998).

    Article  Google Scholar 

  9. Z. Darzynkiewicz, G. Juan, X. Li, et al., Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis), Cytometry 27, 1–20 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. C. Jiang, W. Jiang, C. Ip, et al., Selenium-induced inhibition of angiogenesis in mammary cancer at chemopreventive levels of intake, Mol. Carcinogen. 26, 213–225 (1999).

    Article  CAS  Google Scholar 

  11. S. Y. Yu, P. Ao, L. M. Wang, et al., Biochemical and cellular aspects of the anticancer activity of selenium, Biol. Trace Element Res. 15, 243–255 (1988).

    CAS  Google Scholar 

  12. G. F. Combs, Jr, Chemopreventive mechanism of selenium, Med. Klin. 15, 94(Suppl. 3), 18–24 (1999).

    Google Scholar 

  13. C. Ip, Lessons from basic research in selenium and cancer prevention, J. Nutr. 128, 1845–1854 (1998).

    PubMed  CAS  Google Scholar 

  14. K. A. Poirer and J. A. Milner, The effect of various seleno-compounds on Erlich ascites tumor cells, Biol. Trace Element Res. 1, 25–34 (1979).

    Google Scholar 

  15. C. Ip, C. Hayes, R. Budnick, et al., Chemical form of selenium, critical metabolites and cancer prevention, Cancer Res. 51, 595–600 (1991).

    PubMed  CAS  Google Scholar 

  16. K. Ortman and B. Pehrson, Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast, J. Anim. Sci. 77, 3365–3370 (1999).

    PubMed  CAS  Google Scholar 

  17. J. W. Finley, C. D. Davis, and Y. Feng, Selenium from high selenium broccoli protects rats from colon cancer, J. Nutr. 130, 2384–2389 (2000).

    PubMed  CAS  Google Scholar 

  18. D. Y. Cho, U. Jung, and A. S. Chung, Induction of apoptosis by selenite and selenodiglutathione in HL-60 cells: correlation with cytotoxicity, Biochem. Mol. Biol. Int. 47, 781–793 (1999).

    PubMed  CAS  Google Scholar 

  19. J. G. Ren, R. L. Zheng, Y. M. Shi, et al., The possible mechanism of the differentiation and apoptosis induced by oxidative stress may be related to the lipid peroxidation of cell membrane. Cell. Biol. Int. 22, 41–49 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. H. E. Ganther and C. Corcoran, Selenotrisulfides. II. Cross-linking of reduced pancreatic ribonuclease with selenium, Biochemistry 8, 2557–2563 (1969).

    Article  PubMed  CAS  Google Scholar 

  21. F. Islam, Y. Watanabe, H. Morii, et al., Inhibition of rat brain prostaglandin D synthase by inorganic selenocompounds, Arch. Biochem. Biophys. 289, 161–166 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. S. Lopez, Y. Miyashita, and S. S. Simons, Jr, Structurally based, selective interaction of arsenite with steroid receptors, J. Biol. Chem. 265, 16,039–16,042 (1990).

    CAS  Google Scholar 

  23. G. D. Frenkel, A. Walcott, and C. Middleton, Inhibition of RNA and DNA polymerases by the product of the reaction of selenite with sulfhydryl compounds, Mol. Pharmacol. 31, 112–116 (1987).

    PubMed  CAS  Google Scholar 

  24. L. N. Vernie, J. G. Collard, A. P. Eker, et al., Studies on the inhibition of protein synthesis by selenodiglutathione, Biochem. J. 180, 213–218 (1979).

    PubMed  CAS  Google Scholar 

  25. H. E. Gantner, Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase, Carcinogenesis 20, 1647–1666 (1999).

    Google Scholar 

  26. H. E. Ganther, Pathways of selenium metabolism including respiratory excretory products, J. Am. Coll. Toxicol. 5, 1–5 (1986).

    CAS  Google Scholar 

  27. R. A. Sunde, Molecular biology of selenoproteins, Annu. Rev. Nutr. 10, 451–474 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. C. J. Sherr, Cancer cell cycles, Science 274, 1672–1677 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. H. S. Park, S. H. Huh, Y. Kim, et al., Selenite negatively regulates caspase-3 through a redox mechanism, J. Biol. Chem. 275, 8487–8491 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. R. Sinha and D. Medina, Inhibition of cdk2 kinase activity by methylselenocysteine in synchronized mouse mammary epithelial tumor cells, Carcinogenesis 18, 1541–1547 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celik, H.A., Aydin, H.H., Deveci, R. et al. Biochemical and morphological characteristics of selenite-induced apoptosis in human hepatoma hep G2 cells. Biol Trace Elem Res 99, 27–39 (2004). https://doi.org/10.1385/BTER:99:1-3:027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:99:1-3:027

Index Entries

Navigation