Skip to main content
Log in

Phosphorylation of thymidine and AZT in heart mitochondria

Elucidation of a novel mechanism of AZT cardiotoxicity

  • Original Contributions
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Antiretroviral nucleoside analogs used in highly active antiretroviral therapy (HAART) are associated with cardiovascular and other tissue toxicity associated with mitochondrial DNA depletion, suggesting a block in mitochondrial (mt)-DNA replication. Because the triphosphate forms of these analogs variably inhibit mt-DNA polymerase this enzyme has been promoted as the major target of toxicity associated with HAART. We have used isolated mitochondria from rat heart to study the mitochondrial transport and phosphorylation of thymidine and AZT (azidothymidine, or zidovudine), a component used in HAART. We demonstrate that isolated mitochondria readity transport thymidine and phosphorylate it to thymidine 5′-triphosphate (TTP) within the matrix. Under identical conditions, AZT is phosphorylated only to AZT-5′-monophosphate (AZT-MP). The kinetics of thymidine and AZT agest negative cooperatively of substrate interaction with the enzyme, consistent with work by others on mitochondrial thymidine kinase 2. Results show that TMP and AZT-MP are not transported across the inner membrane, suggesting that AZT-MP may accumulate with time in the matrix. Given the lack of AZT-5′-triphosphate (AZT-TP), it seems unlikely that the toxicity of AZT in the heart is mediated by AZT-TP inhibition of DNA polymerase γ. Rather, our work shows that AZT is a potent inhibitor of thymidine phosphorylation in heart mitochondria, having an inhibitory concentration (IC)50 of 7.0±0.9 μM. Thus, the toxicity of AZT in some tissues may be mediated by disrupting the substrate supply of TTP for mt-DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, W. and Dalakas, M.C. (1995). Mitochondrial toxicity of antiviral drugs. Nat. Med. 1:417–421.

    Article  PubMed  CAS  Google Scholar 

  2. Benbrik E., Chariot, P. Bonavaud, S., Ammi-Satd, M., Frisdal, E., Rey, C., et al. (1997). Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) on cultured human muscle cells. Neurol. Sci. 149:19–25.

    Article  CAS  Google Scholar 

  3. Barile, M., Valenti, D., Quagliariello, E., and Passarella, S. (1998). Mitochondrial as cell targets of AZT (Zidovudine). Gen. Pharmacol. 31:531–538.

    Article  PubMed  CAS  Google Scholar 

  4. Arnaudo, E., Dalakas, M., Shanske, S. Moraes, C.T., Dimauro, S., and Schon, E.A. (1991). Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337:508–510.

    Article  PubMed  CAS  Google Scholar 

  5. Simpson, M.V., Chin, C.D., Keilbaugh, S.A., Lin, T.S., and Prusof, W.H. (1989). Studies on the inhibition of mitochondrial DNA replication by 3′-azido-3′-deoxythymidine and other dideoxynucleoside analogs which inhibit HIV-1 replication. Biochem. Pharmacol 38:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  6. Lewis, W., Gonzalez, B., Chomyn, A., and Papoian, T.J. (1992). Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. Clin. Invest. 89:1354–1360.

    CAS  Google Scholar 

  7. Lewis W., Simpson, J.F., and Meyer, R.R. (1994). Cardiac mitochondrial DNA, polymerase-γ is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ. Res. 74:344–348.

    PubMed  CAS  Google Scholar 

  8. Lim, S.E. and Copeland, W.C. (2001). Differential incorporation removal of antiviral deoxynucleosides by human DNA polymerase γ. J. Biol. Chem. 276:23616–23623.

    Article  PubMed  CAS  Google Scholar 

  9. Martin J.L., Brown C.E., Matthews-Davis N., and Reardon J.E. (1994). Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob. Agents Chemother. 38:2743–2749.

    PubMed  CAS  Google Scholar 

  10. Johnson, A.A., Ray, A.S., Hanes, J., Suo, Z., Colacino, J.M., Anderson, K.S., et al. (2001). Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J. Biol. Chem. 276:40847–40857.

    Article  PubMed  CAS  Google Scholar 

  11. Sales, S.D., Hoggard, P.G., Sunderland, D., Khoo, S., Hart, C.A., and Back, D.J. (2001). Zidovudine phosphorylation and mitochondrial toxicity in vitro. Toxicol., Appl. Pharmacol. 177:54–58.

    Article  CAS  Google Scholar 

  12. Lavie, A., Schlichting, I., Vetter, I.R., Konrad, M., Reinstein, J., and Goody, R.S. (1997). The bottleneck in AZT activation. Nat. Med 3:922–924.

    Article  PubMed  CAS  Google Scholar 

  13. Lavie, A., Vetter, I.R., Konrad M., Woody R.S., Reinstein, J., and Schilichting, L. (1997). Structure of thymidylate kinase reveals the cause behind the limiting step in AZT activation. Nat. Struct. Biol. 4:601–604.

    Article  PubMed  CAS  Google Scholar 

  14. Frick, L.W., Nelson, D.J., St Clair, M.H., Furman, P.A., and Krenitsky, T.A. (1988). Effects of 3′azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem. Biophys. Res. Commun. 154:124–129.

    Article  PubMed  CAS  Google Scholar 

  15. Hobbs, G.A., Keilbaugh, S.A., Rief, P.M., and Simpson, M.V. (1995). Cellular targets of 3′azido-3′-deoxythymidine: an early (non-delayed) effect on oxidative phosphorylation. (1995). Biochem. Pharmacol. 50:381–390.

    Article  PubMed  CAS  Google Scholar 

  16. Johansson, M., Van Rompay, A.R., Degreve, B., Balzarini, J., and Karlsson, A. (1999). Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. J. Biol. Chem. 274:23814–23819.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, L., Karlsson, A., Arner, E.S.J., and Eriksson, S. (1993). Substrate specificity of mitochondrial 2′deoxyguanosine kinase. J. Biol. Chem. 268:22847–22852.

    PubMed  CAS  Google Scholar 

  18. Wang, L., Munch-Petersen, B., Herrstrom Sjoberg, A., Hellman, U., Bergman, T., Jornvall, H., et al. (1999). Human thymidine kinase 2: molecular cloning and characterization of the enzyme activity with antiviral and cytostatic nucleosid substrates. FEBS Lett. 443:170–174.

    Article  PubMed  CAS  Google Scholar 

  19. Mazzon, C. Rampazzo, C., Chaira Scaini, M., Gallinaro, L., Karlsson, A., Meir, C., et al. (2003). Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibits and implications for therapy. Biochem. Pharmacol. 66:471–479.

    Article  PubMed  CAS  Google Scholar 

  20. Van Rompay, A.R., Johansson, M., and Karlsson, A. (2000). Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol. Ther. 87:189–198.

    Article  PubMed  Google Scholar 

  21. Kowluru, A., Tannous, M., and Chen, H.Q. (2002). Localization and characterization of the mitochondrial isoform of the nucleotide diphosphate kinase in the pancreatic β cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase. Arch. Biochem. Biophys. 398: 160–169.

    Article  PubMed  CAS  Google Scholar 

  22. Dolce, V., Fiermonte, G., Runwick, M.J., Palmieri, F., and Walker, J.E. (2000). The human mitochondrial deoxynucleotide carrier and tis role in the toxicity of nucleoside antivirals. Proc. Natl. Acad. Sci. USA 98:2284–2288.

    Article  Google Scholar 

  23. Munch-Petersen, B., Cloos, L., Tyrsted, G., and Eriksson, S. (1991). Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J. Biol. Chem. 266:9032–9038.

    PubMed  CAS  Google Scholar 

  24. Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., and Elpeleg, O. (2001). Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat. Genet. 29:342–344.

    Article  PubMed  CAS  Google Scholar 

  25. McKee, E.E., Grier, B.L., Thompson, G.S., and McCourt, J.D. (1990). Isolation and incubation conditions to study heart mitochondrial protein synthesis. Am. J. Physiol. 258: E492-E502.

    PubMed  CAS  Google Scholar 

  26. McKee, E.E., Bentley, A.T., Smith, R.M., and Ciaccio, C.E. (1990). Origin of guanine nucleotides in isolated heart mitochondria. Biochem. Biophys. Res. Commun. 257:466–472.

    Article  Google Scholar 

  27. McKee, E.E., Bentley, A.T., Smith, R.M., Kraas, J.R., and Ciaccio, C.E. (2000). Guanine nucleotide transport by atractyloside-sensitive and-insensitive carriers in isolated heart mitochondrial. Am. J. Physiol. 279:C1870-C1879.

    CAS  Google Scholar 

  28. Wang, I. and Eriksson, S. (2000). Cloning and characterization of full-length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria. Biochem. J. 351:469–476.

    Article  PubMed  CAS  Google Scholar 

  29. Saada, A., Ben-Shalom, E. Zyslin, R., Mandel, H., and Elpeleg, O. (2003). Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency. Biochem. Biophys. Res. Commun. 310:963–966.

    Article  PubMed  CAS  Google Scholar 

  30. Mandel, H., Szarel, R., Labay, V., Elpeleg, O., Saada, A., Anbinder Y., et al. (2001). The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat. Genet. 29:337–341.

    Article  PubMed  CAS  Google Scholar 

  31. Nishino, I., Spinazolla, A., and Hirano, M. (1999). Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283:689–692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. McKee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKee, E.E., Bentley, A.T., Hatch, M. et al. Phosphorylation of thymidine and AZT in heart mitochondria. Cardiovasc Toxicol 4, 155–167 (2004). https://doi.org/10.1385/CT:4:2:155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:2:155

Key Words

Navigation