Skip to main content
Log in

Overexpression of hexokinase protects hypoxic and diabetic cardiomyocytes by increasing ATP generation

  • Original Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiac glucose metabolism is critical to hypoxic cardiac function and hypoxia is known to stimulate glucose metabolism. This increases generation of ATP when mitochondrial respiration is inhibited. In diabetes, cardiac glucose metabolism declines and this may contribute to diabetic cardiomyopathy. The first step in committing glucose to metabolism is glucose phosphorylation catalyzed by hexokinase. But the potential role of hexokinase in the hypoxic or diabetic heart is uncertain. This study is designed to assess the ability of hexokinase and elevated ATP to protect cardiomyocyte contractility from hypoxia and diabetes. We used cardiomyocytes from the transgenic mouse Mh, which has cardiac specific expression of yeast hexokinase, to investigate the importance of glucose phosphorylation in the myocyte response to hypoxia and diabetes. Cardiomyocytes were isolated from FVB control and Mh hearts to assess the effects of 2h of hypoxia on myocyte contractility and ATP conent. The protective effect of hexokinase on diabetes was assessed in myocytes from the OVE26 Type I diabetic mouse and in OVE26Mh diabetic mice that carry the hexokinase gene. Overexpression of hexokinase had no effect during aerobic culture, but during hypoxia, hexokinase improved ATP content by 44% and this restored contractility almost to normal levels. In myocytes from diabetic mice, tested under both aerobic and hypoxic conditions, the hexokinase gene significantly improved ATP content and this significantly improved contractility. These results demonstrate that elevating hexokinase activity can be beneficial to hypoxic or diabetic cardiomyocytes secondary to improving myocyte ATP levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manchester, J., Kong, X., Nerbonne, J., Lowry, O.H., and Lawrence, J.C. Jr. (1994). Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism. Am. J. Physiol. 266:E326-E333.

    PubMed  CAS  Google Scholar 

  2. Feldhaus, L.M. and Liedtke, A.J. (1998). mRNA expression of glycolytic enzymes and glucose transporter proteins in ischemic myocardium with and without reperfusion. J. Mol. Cell. Cardiol. 30:2475–2485.

    Article  PubMed  CAS  Google Scholar 

  3. McFalls, E.O., Murad, B., Liow, J.S., Gannon, M.C., Haspel, H.C., Lange, A., et al. (2002). Glucose uptake and glycogen levels are increased in pig heart after repetitive ischemia. Am. J. Physiol. Heart Circ. Physiol. 282:H205-H211.

    PubMed  CAS  Google Scholar 

  4. Annane, D., Duboc, D., Mazoyer, B., Merlet, P., Fiorelli, M., Eymard, B., et al. (1994). Correlation between decreased myocardial glucose phosphorylation and the DNA mutation size in myotonic dystrophy. Circulation 90:2629–2634.

    PubMed  CAS  Google Scholar 

  5. Stanley, W.C., Lopaschuk, G.D., and McCormack, J.G. (1997). Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc. Res. 34:25–33.

    Article  PubMed  CAS  Google Scholar 

  6. Rodrigues, B. and McNeill, J.H. (1992). The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovasc. Res. 26: 913–922.

    Article  PubMed  CAS  Google Scholar 

  7. Rubler, S., Dlugash, J., Yuceoglu, Y.Z., Kumral, T., Branwood, A.W., and Grishman, A. (1972). New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30:595–602.

    Article  PubMed  CAS  Google Scholar 

  8. Kannel, W.B., Hjortland, M., and Castelli, W.P. (1974). Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol. 34:29–34.

    Article  PubMed  CAS  Google Scholar 

  9. Belke, D.D., Larsen, T.S., Gibbs, E.M., and Severson, D.L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am. J. Physiol. Endocrinol. Metab. 279:E1104-E1113.

    PubMed  CAS  Google Scholar 

  10. Feuvray, D. and Lopaschuk, G.D. (1997). Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased. Cardiovasc. Res. 34:113–120.

    Article  PubMed  CAS  Google Scholar 

  11. Liang, Q., Donthi, R.V., Kralik, P.M., and Epstein, P.N. (2002). Elevated hexokinase increases cardiac glycolysis in transgenic mice. Cardiovasc. Res. 53:423–430.

    Article  PubMed  CAS  Google Scholar 

  12. Epstein, P.N., Overbeek, P.A., and Means, A. P. (1989). Calmodulin-induced early-onset diabetes in transgenic mice. Cell 58:1067–1073.

    Article  PubMed  CAS  Google Scholar 

  13. Liang, Q., Carlson, E.C., Donthi, R.V., Kralik, P.M., Shen, X., and Epstein, P.N. (2002). Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 51:174–181.

    Article  PubMed  CAS  Google Scholar 

  14. Bedoya, F.J., Meglasson, M.D., Wilson, J.M., and Matschinsky, F.M. (1985). Radiometric oil well assay for glucokinase in microscopic structures. Anal. Biochem. 144:504–513.

    Article  PubMed  CAS  Google Scholar 

  15. Ye, G., Metreveli, N.S., Donthi, R.V., Xia, S., Xu, M., Carlson, E.C., et al. (2004). Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53:1336–1343.

    Article  PubMed  CAS  Google Scholar 

  16. Zheng, S., Noonan, W.T., Metreveli, N.S., Coventry, S., Kralik, P.M., Carlson, E.C., et al. (2004). Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes 53:3248–3257.

    Article  PubMed  CAS  Google Scholar 

  17. Ye, G., Metreveli, N.S., Ren, J., and Epstein, P.N. (2003). Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 52:777–783.

    Article  PubMed  CAS  Google Scholar 

  18. Steenbergen, C., Murphy, E., Watts, J.A., and London, R.E. (1990). Correlation between cytosolic free calcium, contracture, ATP and irreversible ischemic injury in perfused rat heart. Circ. Res. 66:135–146.

    PubMed  CAS  Google Scholar 

  19. Meno, H., Kanaide, H., Okada, M., and Nakamura, M. (1984). Total adenine nucleotide stores and sarcoplasmic reticular Ca transport in ischemic rat heart. Am. J. Physiol. 247:H380-H386.

    PubMed  CAS  Google Scholar 

  20. Ren, J. and Davidoff, A.J. (1997). Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am. J. Physiol. 272:H148-H158.

    PubMed  CAS  Google Scholar 

  21. Ren, J., Sowers, J.R., Walsh, M.F., and Brown, R.A. (2000). Reduced contractile response to insulin and IGF-I in ventricular myocytes from genetically obese Zucker rats. Am. J. Physiol. Heart Circ. Physiol. 279:H1708-H1714.

    PubMed  CAS  Google Scholar 

  22. Noda, C., Masuda, T., Sato, K., Ikeda, K., Shimohama, T., Matsuyama, N., et al. (2003). Vanadate improves cardiac function and myocardial energy metabolism in diabetic rat hearts. Jpn. Heart J. 44:745–757.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, G., Donthi, R.V., Metreveli, N.S. et al. Overexpression of hexokinase protects hypoxic and diabetic cardiomyocytes by increasing ATP generation. Cardiovasc Toxicol 5, 293–300 (2005). https://doi.org/10.1385/CT:5:3:293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:5:3:293

Key Words

Navigation