Skip to main content
Log in

The specificity and molecular basis of α1-adrenoceptor and CXCR chemokine receptor dimerization

  • Short Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

It is now well established that rhodopsin-like, family-AG protein-coupled receptors (GPCRs) can exist within homo- and heterodimeric/oligomeric complexes. However, limited information is currently available on the molecular basis of these interactions or their selectivity. Using the α1-adrenoceptor family as a model, this has been examined using assays including coimmunoprecipitation, saturation biluminescence resonance energy transfer (BRET), time-resolved fluorescence resonance energy transfer (FRET), and bimolecular fluorescence complementation. We demonstrate key roles for transmembrane helices I and IV in homodimeric/oligomeric interactions of the α1b-adrenoceptor and suggest that other interactions indicate that this GPCR can exist as a higher-order oligomeric complex. Literature reports on heterodimerization between chemokine receptor family members and the effects or otherwise of agonist ligands are complex. It was recently indicated that although the CXCR2 receptor is able to homodimerize, this is not the case for the closely related CXCR1 receptor and that these two GPCRs do not heterodimerize. We have reinvestigated these issues using combinations of coimmunoprecipitation, saturation BRET, and novel endoplasmic reticulum-trapping strategy. Unlike the previous report, we demonstrate that CXCR1 is able to both homodimerize and heterodimerize with the CXCR2 receptor and that the relative affinity of these interactions suggests that with coexpression of these two GPCRs a random mixture of homo- and heterodimers will be present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angers S., Salahpour A., and Bouvier M. (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  PubMed  CAS  Google Scholar 

  • Baneres J. L. and Parello J. (2003) Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J. Mol. Biol. 329, 815–829.

    Article  PubMed  CAS  Google Scholar 

  • Brady A. E. and Limbird L. E. (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal. 14, 297–309.

    Article  PubMed  CAS  Google Scholar 

  • Carrillo J. J., López-Gimenez J. F., and Milligan G. (2004) Multiple interactions between transmembrane helices generate the oligomeric α1b-adrenoceptor. Mol. Pharmacol. 66, 1123–1137.

    Article  PubMed  CAS  Google Scholar 

  • Carrillo J. J., Pediani J., and Milligan G. (2003) Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J. Biol. Chem. 278, 42578–42587.

    Article  PubMed  CAS  Google Scholar 

  • Coge F., Guenin S. P., Renouard-Try A., Rique H., Ouvry C., Fabry N., et al. (1999) Truncated isoforms inhibit [3H]prazosin binding and cellular trafficking of native human alpha1A-adrenoceptors. Biochem. J. 343, 231–239.

    Article  PubMed  CAS  Google Scholar 

  • George S. R., O’Dowd B. F., and Lee S. P. (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discovery 1, 808–820.

    Article  CAS  Google Scholar 

  • Guo W., Shi L., and Javitch J. A. (2003) The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J. Biol. Chem. 278, 4385–4388.

    Article  PubMed  CAS  Google Scholar 

  • Hakak Y., Shrestha D., Goegel M. C., Behan D. P., and Chalmers D. T. (2003) Global analysis of G-protein-coupled receptor signaling in human tissues. FEBS Lett. 550, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Hernanz-Falcon P., Rodriguez-Frade J. M., Serrano A., Juan D., del Sol A., Soriano S. F., et al. (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat. Immunol. 5, 216–223.

    Article  PubMed  CAS  Google Scholar 

  • Klco J. M., Lassere T. B., and Baranski T. J. (2003) C5a receptor oligomerization. I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor. J. Biol. Chem. 278, 35345–35353.

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu T. A., Tanoue A., Hirasawa A., Yamauchi J., and Tsujimoto G. (2003) Recent advances in alpha1-adrenoceptor pharmacology. Pharmacol. Ther. 98, 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. P., O’Dowd B. F., Rajaram R. D., Nguyen T., and George S. R. (2003) D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry 42, 11023–11031.

    Article  PubMed  CAS  Google Scholar 

  • Liang Y., Fotiadis D., Filipek S., Saperstein D. A., Palczewski K., and Engel A. (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem. 278, 21655–21662.

    Article  PubMed  CAS  Google Scholar 

  • Margeta-Mitrovic M. (2002) Assembly-dependent trafficking assays in the detection of receptor-receptor interactions. Methods 27, 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Mercier J. F., Salahpour A., Angers S., Breit A., and Bouvier M. (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G. (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 66, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G. and White J. H. (2001) Protein-protein interactions at G-protein-coupled receptors. Trends Pharmacol. Sci. 22, 513–518.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G., Lopez-Gimenez J. F., Wilson S., and Carrillo J. (2004) Selectivity in the oligomerisation of G protein-coupled receptors. Semin. Cell Develop. Biol. 15, 263–268.

    Article  CAS  Google Scholar 

  • Morris D. P., Price R. R., Smith M. P., Lei B., and Schwinn D. A. (2004) Cellular trafficking of human 1a-adrenergic receptors is continuous and primarily agonist-independent. Mol. Pharmacol. 66, 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Piascik M. T. and Perez D. M. (2001) Alpha1-adrenergic receptors: new insights and directions. J. Pharmacol. Exp. Ther. 298, 403–410.

    PubMed  CAS  Google Scholar 

  • Ramsay D., Carr I. C., Pediani J., Lopez-Gimenez J. F., Thurlow R., Fidock M., and Milligan G. (2004) High affinity interactions between human α1A-adrenoceptor C-terminal splice variants produce homo and heterodimers but do not generate the α1L-adrenoceptor. Mol. Pharmacol. 66, 228–239.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay D., Kellett E., McVey M., Rees S., and Milligan G. (2002) Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J. 365, 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Frade J. M., Mellado M., and Martinez A.C. (2001) Chemokine receptor dimerization: two are better than one. Trends Immunol. 22, 612–617.

    Article  PubMed  CAS  Google Scholar 

  • Salahpour A., Angers S., Mercier J. F., Lagace M., Marullo S., and Bouvier M. (2004) Homodimerization of the beta 2-adrenergic receptor as a pre-requisite for cell surface targeting. J. Biol. Chem. 279, 33390–33397.

    Article  PubMed  CAS  Google Scholar 

  • Schwappach B., Zerangue N., Jan Y. N., and Jan L. Y. (2000) Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 26, 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Stanasila L., Perez J.-B., Vogel H., and Cotecchia S. (2003) Oligomerization of the α1a- and α1b-adrenergic receptor subtypes. J. Biol. Chem. 278, 40239–40251.

    Article  PubMed  CAS  Google Scholar 

  • Trettel F., Di Bartolomeo.S., Lauro C., Catalano M., Ciotti M. T., and Limatola C. (2003) Ligand-independent CXCR2 dimerization. J. Biol. Chem. 278, 40980–40988.

    Article  PubMed  CAS  Google Scholar 

  • Uberti M. A., Hall R. A., and Minneman K. P. (2003) Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmaco-logical properties. Mol. Pharmacol. 64, 1379–1390.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Milligan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milligan, G., Wilson, S. & López-Gimenez, J.F. The specificity and molecular basis of α1-adrenoceptor and CXCR chemokine receptor dimerization. J Mol Neurosci 26, 161–168 (2005). https://doi.org/10.1385/JMN:26:2-3:161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:26:2-3:161

Index Entries

Navigation