Skip to main content
Log in

β-amyloid protein structure determines the nature of cytokine release from rat microglia

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Activated microglia represent a major source of inflammatory factors in Alzheimer’s disease and a possible source of cytotoxic factors. β-Amyloid (Aβ) peptide, the predominant component in amyloid plaques, has been shown to activate microglia and stimulate their production of inflammatory factors. The present study was performed to analyze the responses of microglia to different forms of Aβ, with regard to release of the proinflammatory cytokines interleukin-1α (IL-1α), IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and interferon-γ (IFN-γ), as well as the IL-1 receptor antagonist (IL-1ra). Primary cultures of microglia from rat neonatal cerebral cortex were incubated with freshly dissolved Aβ1–40 or Aβ1–42, Aβ1–40 fibrils, Aβ1–40 βamy balls, or vehicle. Aβ1–40 fibrils did not significantly stimulate any of these cytokines. Freshly dissolved Aβ1–40 resulted in a marked increase in the release of IL-1β, and freshly dissolved Aβ1–42 significantly stimulated both IL-1α and IFN-γ secretion. The Aβ1–40 βamy balls stimulated the secretion of IL-1α and IL-1β. Incubation with Aβ peptides did not affect the secretion of IL-1ra, IL-6, or TNF-α. In the case of IL-1β, the response is correlated with the presence of Aβ peptide as monomers and oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas N., Bednar I., Mix E., et al. (2002) Up-regulation of the inflammatory cytokines IFN-γand IL-12 and down-regulation of IL-4 in cerebral cortex regions of APPSWE transgenic mice. J. Neuroimmunol. 126, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Aisen P. S., Schafer K. A., Grundman M., Pfeiffer E., Sano M., Davis K. L., et al. (2003) Alzheimer’s disease cooperative study. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289, 2819–2826.

    Article  PubMed  CAS  Google Scholar 

  • Aksenova M. V., Aksenov M. Y., Butterfield D. A., and Carney J. M. (1996) α-1-Antichymotrypsin interaction with Aβ (1–40) inhibits fibril formation but does not affect the peptide toxicity. Neurosci. Lett. 211, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Araujo D. M. and Cotman C. W. (1992) β-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569, 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Ard M. D., Cole G. M., Wei J., Mehrle A. P., and Fratkin J. D. (1996) Scavenging of Alzheimer’s amyloid β-protein by microglia in culture. J. Neurosci. Res. 43, 190–202.

    Article  PubMed  CAS  Google Scholar 

  • Bard F., Cannon C., Barbour R., et al. (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Bauer J., Strauss S., Schreiter-Gasser U., Ganter U., Schlegel P., Witt I., et al. (1991) Interleukin-6 and α-2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices. FEBS Lett. 285, 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste E. N., Nguyen V. T., and O’Keefe G. M. (2001) Immunological aspects of microglia: relevance to Alzheimer’s disease. Neurochem. Int. 39, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Bitan G. and Teplow D. B. (2004) Rapid photochemical cross-linking—a new tool for studies of metastable, amyloidogenic protein assemblies. Acc. Chem. Res. 37, 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Blasko I., Ransmayr G., Veerhuis R., Eikelenboom P., and Grubeck-Loebenstein B. (2001) Does IFNγ play a role in neurodegeneration? J. Neuroimmunol. 116, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Blum-Degen D., Muller T., Kuhn W., Gerlach M., Przuntek H., and Riederer P. (1995) Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 202, 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Cacabelos R., Barquero M., Garcia P., Alvarez X. A., and Varela de Seijas E. (1991) Cerebrospinal fluid interleukin-1β (IL-1β) in Alzheimer’s disease and neurological disorders. Methods Find. Exp. Clin. Pharmacol. 13, 455–458.

    PubMed  CAS  Google Scholar 

  • Cleary, J. P., Walsh D. M., Hofmeister J. J., et al. (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci. 8, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Combs C. K., Karlo J. C., Kao S. C., and Landreth G. E. (2001) β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179–1188.

    PubMed  CAS  Google Scholar 

  • Dahlgren K. N., Manelli A. M., Stine W. B. Jr., Baker L. K., Krafft G. A., and LaDu M. J. (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053.

    Article  PubMed  CAS  Google Scholar 

  • Del Bo R., Angeretti N., Lucca E., De Simoni M. G., and Forloni G. (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and β-amyloid production in cultures. Neurosci. Lett. 188, 70–74.

    Article  PubMed  Google Scholar 

  • Dickson D. W., Lee S. C., Mattiace L. A., Yen S. H., and Brosnan C. (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Eikelenboom P., Zhan S. S., van Gool W. A., and Allsop D. (1994) Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol. Sci. 15, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Engelborghs S., De Brabander M., De Cree J., D’Hooge R., Geerts H., Verhaegen H., and De Deyn P. P. (1999) Unchanged levels of interleukins, neopterin, interferon-γ and tumor necrosis factor-α in cerebrospinal fluid of patients with dementia of the Alzheimer type. Neurochem. Int. 34, 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson C., Van Dam A.- M., Lucassen P. J., Bol J. G. J., Winblad B., and Schultzberg M. (1999) Immunohistochemical localization of interleukin-1β, interleukin-1 receptor antagonist and interleukin-1β converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience 93, 915–930.

    Article  PubMed  CAS  Google Scholar 

  • Flavin M. P. and Ho L. T. (1999) Propentofylline protects neurons in culture from death triggered by macrophage or microglial secretory products. J. Neurosci. Res. 56, 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Forloni G., Demicheli F., Giorgi S., Bendotti C. and Angeretti N. (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Mol. Brain Res. 16, 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto H., Asami-Odaka A., Suzuki N., and Iwatsubo T. (1996) Association of Aβ 40-positive senile plaques with microglial cells in the brains of patients with Alzheimer’s disease and in non-demented aged individuals. Neurodegeneration 5, 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Gitter B. D., Cox L. M., Rydel R. E., and May P. C. (1995) Amyloid β peptide potentiates cytokine secretion by interleukin-1 β-activated human astrocytoma cells. Proc. Natl. Acad. Sci. U. S. A. 92, 10738–10741.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D., Haverkamp L. J., Yu J. H., Karshin W., Tom D., Li J., et al. (1996) Specific domains of β-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J. Neurosci. 16, 6021–6037.

    PubMed  CAS  Google Scholar 

  • Gong Y., Chang L., Viola K. L., Lacor P. N., Lambert M. P., Finch C. E., et al. (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. U. S. A. 100, 10417–10422.

    Article  PubMed  CAS  Google Scholar 

  • Griffin W. S., Sheng J. G., Roberts G. W., and Mrak R. E. (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  • Griffin W. S., Stanley L. C., Ling C., White L., MacLeod V., Perrot L. J., et al. (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 86, 7611–7615.

    Article  PubMed  CAS  Google Scholar 

  • Hampel H., Schoen D., Schwarz M. J., et al. (1997) Interleukin-6 is not altered in cerebrospinal fluid of first-degree relatives and patients with Alzheimer’s disease. Neurosci. Lett. 228, 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Harper J. D., Wong S. S., Lieber C. M., and Lansbury P. T. (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., et al. (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884.

    PubMed  CAS  Google Scholar 

  • Hoshi M., Sato M., Matsumoto S., Noguchi A., Yasutake K., Yoshida N., and Sato K. (2003) Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl. Acad. Sci. U. S. A. 100, 6370–6375.

    Article  PubMed  CAS  Google Scholar 

  • Hu J., Akama K. T., Krafft G. A., Chromy B. A., and Van Eldik L. J. (1998) Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 785, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Ingelsson M., Fukumoto H., Newell K. L., Growdon J. H., Hedley-Whyte E. T., Frosch M. P., et al. (2004) Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62, 925–931.

    PubMed  CAS  Google Scholar 

  • Isobe I., Yanagisawa K., and Michikawa M. (2000) A possible model of senile plaques using synthetic amyloid β-protein and rat glial culture. Exp. Neurol. 162, 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T., Odaka A., Suzuki N., Mizusawa H., Nukina N., and Ihara Y. (1994) Visualization of Aβ 42(43) and Aβ 40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ 42(43). Neuron 13, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Jarrett J. T., Berger E. P., and Lansbury P. T. Jr. (1993) The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697.

    Article  PubMed  CAS  Google Scholar 

  • Kayed R., Head E., Thompson J. L., McIntire T. M., Milton S. C., Cotman C. W., and Glabe C. G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489.

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Singh S., De Jonghe C., Cruts M., et al. (2000) Nonfibrillar diffuse amyloid deposition due to a γ42-secretase site mutation points to an essential role for N-truncated Aβ42 in Alzheimer’s disease. Hum. Mol. Genet. 9, 2589–2598.

    Article  PubMed  CAS  Google Scholar 

  • Lambert M. P., Barlow A. K., Chromy B. A., et al. (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U. S. A. 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lanzrein A. S., Johnston C. M., Perry V. H., Jobst K. A., King E. M., and Smith A. D. (1998) Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer disease: interleukin-1β, interleukin-6, interleukin-1 receptor antagonist, tumor necrosis factor-α, the soluble tumor necrosis factor receptors I and II, and α1-antichymotrypsin. Alzheimer Dis. Assoc. Disord. 12, 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y. B., Nagai A., and Kim S. U. (2002) Cytokines, chemokines, and cytokine receptors in human microglia. J. Neurosci. Res. 69, 94–103.

    Article  PubMed  CAS  Google Scholar 

  • Levine H. III. (1995) Soluble multimeric Alzheimerβ(1–40) pre-amyloid complexes in dilute solution. Neurobiol. Aging 16, 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Lindberg C., Westlind-Danielsson A., and Schultzberg M. (2002) Soluble β-amyloid1–40 peptide stimulates interleukin-1β release from rat microglia more potently than aggregated forms, in The 8th International Conference on Alzheimer’s Disease and Related Disorders, Stockholm, Sweden.

  • Lindberg C., Westlind-Danielsson A., and Schultzberg M. (2003) β-Amyloid-stimulated release of pro- and anti-inflammatory cytokines from rat microglia: differential response to soluble and aggregated forms, in The Society for Neuroscience 33rd Annual Meeting, New Orleans, LA.

  • Lorton D., Kocsis J. M., King L., Madden K., and Brunden K. R. (1996) β-Amyloid induces increased release of interleukin-1β from lipopolysaccharide-activated human monocytes. J. Neuroimmunol. 67, 21–29.

    PubMed  CAS  Google Scholar 

  • Mann D. M., Iwatsubo T., Fukumoto H., Ihara Y., Odaka A., and Suzuki N. (1995) Microglial cells and amyloid β protein (Aβ) deposition; association with A β 40-containing plaques. Acta Neuropathol. 90, 472–477.

    Article  PubMed  CAS  Google Scholar 

  • Martinez M., Fernandez-Vivancos E., Frank A., De la Fuente M., and Hernanz A. (2000) Increased cerebrospinal fluid fas (Apo-1) levels in Alzheimer’s disease. Relationship with IL-6 concentrations. Brain Res. 869, 216–219.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Culwell A. R., Esch F. S., Lieberburg I., and Rydel R. E. (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • McGeer E. G. and McGeer P. L. (2003) Inflammatory processes in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 741–749.

    Article  PubMed  CAS  Google Scholar 

  • McGeer P. L., McGeer E., Rogers J., and Sibley J. (1990) Anti-inflammatory drugs and Alzheimer disease. Lancet 335, 1037.

    Article  PubMed  CAS  Google Scholar 

  • Meda L., Cassatella M. A., Szendrei G. I., Otvos L. Jr., Baron P., Villalba M., et al. (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650.

    Article  PubMed  CAS  Google Scholar 

  • Murphy G. M. Jr., Yang L., and Cordell B. (1998) Macrophage colony-stimulating factor augments β-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J. Biol. Chem. 273, 20967–20971.

    Article  PubMed  CAS  Google Scholar 

  • Näslund J., Haroutunian V., Mohs R., Davis K. L., Davies P., Greengard P., and Buxbaum J. D. (2000) Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283, 1571–1577.

    Article  PubMed  Google Scholar 

  • Neuroinflammation Working Group, Akiyama H., Barger S., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.

    Article  PubMed  CAS  Google Scholar 

  • Palmblad M., Westlind-Danielsson A., and Bergquist J. (2002) Oxidation of methionine 35 attenuates formation of amyloid β-peptide 1–40 oligomers. J. Biol. Chem. 277, 19506–19510.

    Article  PubMed  CAS  Google Scholar 

  • Päiviö A., Jarvet J., Gräslund A., Lannfelt L., and Westlind-Danielsson A. (2004) Unique physicochemical profile of β-amyloid peptide variant Aβ1–40E22G protofibrils: conceivable neuropathogen in arctic mutant carriers. J. Mol. Biol. 339, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Roher A. E., Lowenson J. D., Clarke S., Woods A. S., Cotter R. J., Gowing E., and Ball M. J. (1993) β-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 90, 10836–10840.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner D., Eckman C., Jensen M., et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  • Schultzberg M., Tingsborg S., Nobel S., Lundkvist J., Svenson S., Simoncsits A., and Bartfai T. (1995) Interleukin-1 receptor antagonist protein and mRNA in the rat adrenal gland. J. Interferon Cytokine Res. 15, 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1994) Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer’s disease. Annu. Rev. Cell Biol. 10, 373–403.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2002) Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J. Clin. Invest. 110, 1375–1381.

    PubMed  CAS  Google Scholar 

  • Singh V.K. and Guthikonda P. (1997) Circulating cytokines in Alzheimer’s disease. J. Psychiatr. Res. 31, 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Smits H. A., van Beelen A. J., de Vos N. M., Rijsmus A., van der Bruggen T., Verhoef J., et al. (2001) Activation of human macrophages by amyloid-β is attenuated by astrocytes. J. Immunol. 166, 6869–6876.

    PubMed  CAS  Google Scholar 

  • Solerte S. B., Cravello L., Ferrari E., and Fioravanti M. (2000) Overproduction of IFN-γ and TNF-α from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 917, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Szczepanik A. M., Rampe D., and Ringheim G. E. (2001) Amyloid-β peptide fragments p3 and p4 induce proinflammatory cytokine and chemokine production in vitro and in vivo. J. Neurochem. 77, 304–317.

    Article  PubMed  CAS  Google Scholar 

  • Szekely C. A., Thorne J. E., Zandi P. P., Ek M., Messias E., Breitner J. C., and Goodman S. N. (2004) Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 23, 159–169.

    Article  PubMed  Google Scholar 

  • Takata K., Kitamura Y., Umeki M., Tsuchiya D., Kakimura J., Taniguchi T., et al. (2003) Possible involvement of small oligomers of amyloid-β peptides in 15-deoxy-Δ12,14 prostaglandin J2-sensitive microglial activation. J. Pharmacol. Sci. 91, 330–333.

    Article  PubMed  CAS  Google Scholar 

  • Tarkowski E., Blennow K., Wallin A., and Tarkowski A. (1999) Intracerebral production of tumor necrosis factor-α, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J. Clin. Immunol. 19, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Tarkowski E., Liljeroth A. M., Nilsson A., Minthon L., and Blennow K. (2001) Decreased levels of intrathecal interleukin 1 receptor antagonist in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 12, 314–317.

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P. and Fiers W. (1991) Is amyloidogenesis during Alzheimer’s disease due to an IL-1-/IL-6-mediated ‘acute phase response’ in the brain? Immunol. Today 12, 217–219.

    Article  PubMed  CAS  Google Scholar 

  • Vehmas A. K., Kawas C. H., Stewart W. F., and Troncoso J. C. (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol. Aging 24, 321–331.

    Article  PubMed  Google Scholar 

  • Vigo-Pelfrey C., Lee D., Keim P., Lieberburg I., and Schenk D. B. (1993) Characterization of β-amyloid peptide from human cerebrospinal fluid. J. Neurochem. 61, 1965–1968.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., and Teplow D. B. (1997) Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D. M., Kylubin I., Cleary J. P., et al. (2004) Natural, cell-derived Aβ oligomers: their production, biological activity and inhibition. Neurobiol. Aging 25, 161.

    Article  Google Scholar 

  • Wang H.W., Pasternak J. F., Kuo H., Ristic H., Lambert M. P., Chromy B., et al. (2002) Soluble oligomers of β-amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Westlind-Danielsson A. and Arnerup G. (2001) Spontaneous in vitro formation of supramolecular β-amyloid structures, “βamy balls”, by β-amyloid 1–40 peptide. Biochemistry 40, 14736–14743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharina Lindberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindberg, C., Selenica, ML.B., Westlind-Danielsson, A. et al. β-amyloid protein structure determines the nature of cytokine release from rat microglia. J Mol Neurosci 27, 1–12 (2005). https://doi.org/10.1385/JMN:27:1:001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:1:001

Index Entries

Navigation