Skip to main content
Log in

Large-scale extraction of proteins

  • Protocol
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The production of foreign proteins using selected host with the necessary posttranslational modifications is one of the key successes in modern biotechnology. This methodology allows the industrial production of proteins that otherwise are produced in small quantities. However, the separation and purification of these proteins from the fermentation media constitutes a major bottleneck for the widespread commercialization of recombinant proteins. The major production costs (50–90%) for typical biological product resides in the purification strategy. There is a need for efficient, effective, and economic large-scale bioseparation techniques, to achieve high purity and high recovery, while maintaining the biological activity of the molecule.

Aqueous two-phase systems (ATPS) allow process integration as simultaneously separation and concentration of the target protein is achieved, with posterior removal and recycle of the polymer. The ease of scaleup combined with the high partition coefficients obtained allow its potential application in large-scale downstream processing of proteins produced by fermentation.

The equipment and the methodology for aqueous two-phase extraction of proteins on a large scale using mixer-settler and column contractors are described. The operation of the columns, either stagewise or differential, are summarized. A brief description of the methods used to account for mass transfer coefficients, hydrodynamics parameters of hold-up, drop size, and velocity, back mixing in the phases, and flooding performance, required for column design, is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hustedt, H., Kroner, K. H., Stach, W., and Kula, M.-R. (1978) Procedure for the simultaneous large-scale isolation of Pullulanase and 1,4-α-Glucan Phosphorylase from Klesbsiella pneumoniae involving liquid-liquid separations. Biotechnol. Bioeng. 20, 1989–2005.

    Article  PubMed  CAS  Google Scholar 

  2. Kula, M.-R., Kroner, K. H., and Hustedt, H. (1982) Purification of enzymes by liquid-liquid extraction, in Advances in Biochemical Engineering, vol. 24 (Fiechter, A., ed.), Springer-Verlag, Berlin, pp. 73–118.

    Google Scholar 

  3. Kroner, K. H., Stach, W., Schütte, H., and Kula, M.-R. (1982) Scale-up of formate dehydrogenase isolation by partition. J. Chem. Technol. Biotechnol. 32, 130–137.

    Article  CAS  Google Scholar 

  4. Kroner, K. H., Hustedt, H., and Kula, M.-R. (1982) Evaluation of crude dextran as phase-forming polymer for the extraction of enzymes in aqueous two-phase systems in large scale. Biotechnol. Bioeng. 24, 1015–1045.

    Article  CAS  PubMed  Google Scholar 

  5. Hustedt, H., Kroner, K. H., Menge, U., and Kula, M.-R. (1985) Protein recovery using two-phase systems. Trends Biotechnol. 3, 139–144.

    Article  CAS  Google Scholar 

  6. Hustedt, H., Kroner, K. H., and Kula, M.-R. (1985) Applications of phase partitioning in biotechnology, in Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses and Applications to Biotechnology (Walter, H., Brooks, D. E., and Fisher, D., eds.), Academic, Orlando, FL, pp. 529–587.

    Google Scholar 

  7. Hustedt, H., Kroner, K. H., and Papamichael, N. (1988) Continuous cross-current aqueous two-phase extraction of enzymes from biomass; automated recovery in production scale. Process-Biochem. 23, 129–137.

    CAS  Google Scholar 

  8. Cabral, J. M. S. and Aires-Barros, M. R. (1993) Liquid-liquid extraction of biomolecules using aqueous two-phase systems, in Recovery Processes for Biological Materials (Kennedy, J. F. and Cabral, J. M. S., eds.), Wiley, West Sussex, pp. 273–302.

    Google Scholar 

  9. Kula, M. R. (1990) Trends and future of aqueous two-phase extraction. Bioseparation 1, 181–189.

    PubMed  CAS  Google Scholar 

  10. Strandberg, L., Kohler, K., and Enfors, S.-O. (1991) Large-scale fermentation and purification of a recombinant protein from Escherichia coli. Process Biochem. 26, 225–234.

    Article  CAS  Google Scholar 

  11. Tjerneld, F. (1992) Aqueous two-phase partitioning on industrial scale, in Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, (Harris, J. M., ed.), Plenum, New York, pp. 85–102.

    Google Scholar 

  12. Veide, A., Smeds, A. L., and Enfors, S.-O. (1983) A process for large scale isolation of β-galactosidase from E. coli in an aqueous two-phase system. Biotechnol. Bioeng. 25, 1789–1800.

    Article  CAS  PubMed  Google Scholar 

  13. Raghavarao, K. S. M. S., Rastogi, N. K., Gowthaman, M. K., and Karanth, N. G. (1995) Aqueous two-phase extraction for downstream processing of enzymes/proteins. Adv. Appl. Microbiol. 41, 97–171.

    Article  CAS  Google Scholar 

  14. Boland, M. J., Hesselink, P. G. M., Papamichael, N., and Hustedt, H. (1991) Extractive purification of enzymes from animal tissue using aqueous two-phase systems: pilot scale studies. J. Biotechnol. 19, 19–34.

    Article  PubMed  CAS  Google Scholar 

  15. Cordes, A. and Kula, M.-R. (1986) Process design for large-scale purification of formate dehydrogenase from Candida boidinii by affinity partition. J. Chromatogr. 376, 375–384.

    Article  CAS  Google Scholar 

  16. Tjerneld, F., Johansson, G., and Joelsson, M. (1987). Affinity liquid-liquid extraction of lactate dehydrogenase in large scale. Biotechnol. Bioeng. 30, 809–816.

    Article  CAS  PubMed  Google Scholar 

  17. Datar, R. and Rosen, C. G. (1986) Studies on the removal of Escherichia coli cell debris by aqueous two-phase polymer extraction. J. Biotechnol. 3, 207–219.

    Article  CAS  Google Scholar 

  18. Szlag, D. C., and Giuliano, K. A. (1988) A low-cost aqueous two-phase system for enzyme extraction. Biotechnol. Tech. 2, 277–282.

    Article  CAS  Google Scholar 

  19. Szlag, D. C., Giuliano, K. A., and Snyder, S. M. (1990) A low-cost aqueous two-phase system for affinity extraction, in Downstream and Bioseparation, Recovery and Purification of Biological Products. ACS Symposium Series 419, (Hamel, J.-F. P., Hunter, J. B., and Sikdar, S. K., eds.), American Chemical Society, Washington DC, pp. 71–86.

    Google Scholar 

  20. Tjerneld, F., Berner, S., Cajarville, A., and Johansson, G. (1986) New aqueous two-phase system based on hydroxypropyl starch useful in enzyme purification. Enzyme Microb. Technol. 8, 417–423.

    Article  CAS  Google Scholar 

  21. Kroner, K. H., Hustedt, H., and Kula, M.-R. (1984) Extractive enzyme recovery: economic considerations. Process Biochem. 19, 170–179.

    Google Scholar 

  22. Papamichael, N., Borner, B., and Hustedt, H. (1992) Continuous aqueous phase extraction of proteins: automated processing and recycling of process chemicals. J. Chem. Tech. Biotechnol. 54, 47–55.

    CAS  Google Scholar 

  23. Greve, A. and Kula, M. R. (1991) Recycling of salts in partition protein extraction process. J. Chem. Tech. Biotechnol. 50, 27–42.

    CAS  Google Scholar 

  24. Hustedt, H. (1986) Extractive enzyme recovery with simple recycling of phase forming chemicals. Biotechnol. Lett. 8, 791–796.

    Article  CAS  Google Scholar 

  25. Sawant, S. B., Sikdar, S. K., and Joshi, J. B. (1990) Hydrodynamics and mass transfer in two-phase aqueous extraction using spray columns. Biotechnol. Bioeng. 36, 109–115.

    Article  CAS  PubMed  Google Scholar 

  26. Hustedt, H., Kroner, K. H., Schütte, H., and Kula, M-R. (1983) Extractive purification of intracellular enzymes, in 3rd Rothermburger Fermentation Symposium (Lafferty, R. M., ed.), Springer-Verlag, Berlin, pp. 135–145.

    Google Scholar 

  27. Hustedt, H., Borner, B., Kroner, K. H., and Papamichael, N. (1987) Fully automated continuous cross-current extraction of enzymes in a two-stage plant. Biotechnol. Techniques 1, 49–54.

    Article  CAS  Google Scholar 

  28. Papamichael, N., Borner, B., and Hustedt, H. (1992) Continuous aqueous phase extraction of proteins: automated on-line monitoring of fumarase activity and protein concentration. J. Chem. Tech. Biotechnol. 50, 457–467.

    Google Scholar 

  29. Ladha, G. S. and Degaleesan, T. E. (1976) Transport Phenomena in Liquid Extraction (Ladha, G. S. and Degaleesan, T. E., eds.), McGraw-Hill, New Delhi, India.

    Google Scholar 

  30. Perry, R. H. and Green, D. W. (1997) Perry’s Chemical Engineers’ Handbook, 7th ed. (Perry, R. H., Green, D. W., and Maloney, J. O., eds.), McGraw-Hill, New York, NY.

    Google Scholar 

  31. Brunner, K. H. and Hemfort, H. (1989) Centrifugal separation in biotechnological processes: Downstream processes. Equipment and techniques, in Advances in Biotechnological Processes, vol. 8 (Mizrahi, A., ed.), Alan R. Liss, New York, pp. 35–42.

    Google Scholar 

  32. Hustedt, H., Kroner, K. H., Menge, U., and Kula, M.-R. (1980) Enzyme purification by liquid-liquid extraction. Enzyme Eng. 5, 45–47.

    CAS  Google Scholar 

  33. Ryder, J. and Albertsson, P.-Å. (1971) Interfacial tension of dextran-polyethylene-water two phase system. J. Colloid Interface Sci. 37, 219–222.

    Article  Google Scholar 

  34. Rostami, J. K., Sawant, S. B., and Joshi, J. B. (1992) Enzyme and protein mass transfer coefficient in aqueous two-phase systems- I. Spray extraction columns. Chem. Eng. Science 47, 57–68.

    Article  Google Scholar 

  35. Tsouris, C., Ferreira, R., and Tavlarides, L. L. (1990) Characterization of hydrodynamic parameters in a multistage column contactor. Can. J. Chem. Eng. 68, 913–923.

    Article  CAS  Google Scholar 

  36. Joshi, J. B., Sawant, S.B., Raghavarao, K. S. M. S., Patil, T. A., Jafarabad, K. R., and Sikdar, S. K. (1990) Continuous counter-current two-phase aqueous extraction. Bioseparation 3/4, 311–324.

    Google Scholar 

  37. Lee, J. M. (1992) Biochemical Engineering (Amundson, N. R., ed.), Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  38. Porto, A. L. F., Lima-Filho, J. L., Aires-Barros, M. R., Cabral, J. M. S., and Tambourgi, E. B. (1997) Extraction of recombinant cytochrome b5 from disrupted Escherichia coli cells with an aqueous two-phase system in a continuous perforated rotating disc contactor. Biotechnol. Techniques 11, 641–643.

    CAS  Google Scholar 

  39. Dongaonkar, K. R., Pratt, H. R. C., and Stevens, G. W. (1991) Mass transfer and axial dispersion in a Kühni extraction column. AICHE J. 37, 694–704.

    Article  CAS  Google Scholar 

  40. Jafarabad, R. K., Patil, T. A., Sawant, S. B., and Joshi, J. B. (1992) Enzyme and protein mass transfer coefficient in aqueous two-phase systems-II. York-Scheibel extraction columns. Chem. Eng. Sci. 47, 69–73.

    Article  CAS  Google Scholar 

  41. Jafarabad, R. K., Sawant, S. B., Joshi, J. B., and Sikdar, S. K. (1992) Enzyme and protein mass transfer coefficient in aqueous two-phase systems-I. Spray extraction columns. Chem. Eng. Sci. 47, 57–68.

    Article  CAS  Google Scholar 

  42. Save, S. V., Pangarkar, V. G., and Kumar, S. V. (1993) Intensification of mass transfer in aqueous two-phase systems. Biotechnol. Bioeng. 41, 72–78.

    Article  CAS  PubMed  Google Scholar 

  43. Raghavarao, K. S. M. S., Szlag, D. S., Sikdar, S. K., Joshi, J. B., and Sawant, S. B. (1991) Protein extraction in a column using a polyethylene glycolmaltodextrin two-phase polymer system. Chem. Eng. J. 46, B75-B81.

    Article  Google Scholar 

  44. Venâncio, A., and Teixeira, J. A. (1995) Protein mass transfer studies on a spray column using the PEG-Reppal PES 100 aqueous two-phase system. Bioprocess Eng. 13, 251–255.

    Google Scholar 

  45. Menet, J. M. (1995) La chromatographie liquid-liquid centrifuge. Théorie, applications et comparaison des appareils des types Sanki, J et “Cross-Axis,” PhD Thesis, Universite Paris.

  46. Ito, I. and Bowman, R. L. (1973) Application of the elution centrifuge to separation of polynucleotides with the use of polymer phase systems. Science 182, 391–393.

    Article  PubMed  CAS  Google Scholar 

  47. Diamond, A. D. and Hsu, J. T. (1992) Aqueous two-phase systems for biomolecule separation. Adv. Biochem. Eng. 47, 89–135.

    CAS  Google Scholar 

  48. Almeida, M. C., Venâncio, A., Teixeira, J. A., and Aires-Barros, M. R. (1998) Cutinase purification on poly (ethylene glycol)-hydroxypropyl starch aqueous two-phase systems. J. Chromat. B 711, 151–159.

    Article  CAS  Google Scholar 

  49. Cunha, M. T., Cabral, J. M. S., Tjerneld, F., and Aires-Barros, M. R. (2000) Effect of salts and surfactants on the partitioning of Fusarium solani pisi cutinase in aqueous two-phase systems of thermoseparating ethylene oxide/propylene oxide random copolymer and hydroxypropyl starch. Bioseparation 9, 203–209.

    Article  PubMed  CAS  Google Scholar 

  50. Costa, M. J. L., Cunha, M. T., Cabral, J. M. S., and Aires-Barros, J. M. S. (0000) Scale-up of recombinant cutinase recovery by whole broth extraction with PEG-phosphate aqueous two phase systems. Bioseparation 9, 231–238.

    Article  Google Scholar 

  51. Coimbra, J. D. R., Thommes, J., Meirelles, A. J., and Kula, M.-R. (1995) Performance of a Graesser contactor in the continuous extraction of whey proteins: mixing, mass transfer and efficiency. Bioseparation 5, 259–268.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, T., Aires-Barros, R. Large-scale extraction of proteins. Mol Biotechnol 20, 29–40 (2002). https://doi.org/10.1385/MB:20:1:029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:20:1:029

Index Entries

Navigation