Skip to main content
Log in

Neurobiology of nitrous oxide-induced antinociceptive effects

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nitrous oxide (N2O), or laughing gas, has been used for clinical anesthesia for more than a century and is still commonly used. While the anesthetic/hypnotic mechanisms of N2O remain largely unknown, the underlying mechanisms of its analgesic/antinociceptive effects have been elucidated during the last several decades. Evidence to date indicate that N2O induces opioid peptide release in the periaqueductal gray area of the midbrain leading to the activation of the descending inhibitory pathways, which results in modulation of the pain/nociceptive processing in the spinal cord. The types of opioid peptide induced by N2O and the subtypes of opioid receptors that mediate the antinociceptive effects of N2O appear to depend on various factors including the species and/or strain, the regions of the brain, and the paradigms of behavior testing used for the experiments. Among three types of descending inhibitory pathways, the descending noradrenergic inhibitory pathway seems to play the most prominent role. The specific elements involved are now being resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frost E. A. (1985) A history of nitrous oxide, in Nitrous Oxide/N 2O (Eger E.I., eds), Elsevier, New York, NY, pp. 1–22.

    Google Scholar 

  2. Wynne J. M. (1985) Physics, chemistry, and manufacture of nitrous oxide, in Nitrous Oxide/N 2O (Eger E.I., eds.), Elsevier, New York, NY, pp. 23–39.

    Google Scholar 

  3. Maze M. and Fujinaga M. (2000) Recent advances in understanding the actions and toxicity of nitrous oxide. Anaesthesia 55, 311–314.

    PubMed  CAS  Google Scholar 

  4. Basbaum A. L. and Fields H. L. (1978) Endogenous pain control mechanisms: review and hypothesis. Ann. Neurol. 4, 451–462.

    PubMed  CAS  Google Scholar 

  5. Basbaum A. L. and Fields H. L. (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann. Rev. Neurosci. 7, 309–338.

    PubMed  CAS  Google Scholar 

  6. Behbehani M. M. (1995) Functional characteristics of the midbrain periaqueductal gray. Prog. Neurobiol. 46, 575–605.

    PubMed  CAS  Google Scholar 

  7. Fields H. L. and Basbaum A. L. (1999) Central nervous system mechanisms of pain modulation, in Textbook of Pain, 4th ed. (Wall P.D. and Melzack R., eds.), Churchill Livingstone, Edinburgh, pp. 309–329.

    Google Scholar 

  8. Holden J. E. and Proudfit H. K. (1998) Enkephalin neurons that project to the A7 catecholamin cell group are located in nuclei that modulate nociception: ventromedial medulla. Neuroscience 83, 929–947.

    PubMed  CAS  Google Scholar 

  9. Bajic D. and Proudfit H. K. (1999) Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J. Comp. Neurol. 405, 359–379.

    PubMed  CAS  Google Scholar 

  10. Kirifides M. L., Simpson K. L., Lin R. C.-S., and Waterhouse B. D. (2001) Topographic organization and neurochemical identity of dorsal raphe neurons that project to the trigeminal somatosensory pathway in the rat. J. Comp. Neurol. 435, 325–340.

    PubMed  CAS  Google Scholar 

  11. Proudfit H. K. and Yeomans D. C. (1995) The modulation of nociception by enkephalin-containing neurons in the brainstem, in The Pharmacology of Opioid Peptides (Tseng L. F., eds.), Harwood Academic, Amsterdam, The Netherlands, pp. 197–217.

    Google Scholar 

  12. Finck A. D. (1985) Nitrous oxide analgesia, in Nitrous Oxide/N 2O (Eger, E.I. eds.), Elsevier, New York, NY, pp. 41–55.

    Google Scholar 

  13. Seevers M. H., Bennett J. H., Pohle H. W., and Reinardy E. W. (1937) The analgesia produced by nitrous oxide, ethylene and cyclopropane in the normal human subject. JPET 59, 291–300.

    CAS  Google Scholar 

  14. Berkowitz B. A., Ngai S. H., and Finck A. D. (1976) Nitrous oxide analgesia: resemblance to opiate action. Science 194, 967–968.

    PubMed  CAS  Google Scholar 

  15. Chapman C. R. and Benedetti C. (1979) Nitrous oxide effects on cerebral evoked potential to pain: partial reversal with a narcotic antagonist. Anesthesiology 51, 135–138.

    PubMed  CAS  Google Scholar 

  16. Yang J. C., Clark W. C., and Ngai S. H. (1980) Antagonism of nitrous oxide by naloxone in man. Anesthesiology 52, 414–417.

    PubMed  CAS  Google Scholar 

  17. Berkowitz B. A., Finck A. D., and Ngai S. H. (1977) Nitrous oxide analgesia: reversal by naloxone and development of tolerance. JPET 203, 539–547.

    CAS  Google Scholar 

  18. Lawrence D. and Livingston A. (1981) Opiate-like analgesic activity in general anaesthetics. Br. J. Pharm. 73, 435–442.

    CAS  Google Scholar 

  19. Zuniga J., Joseph S., and Knigge K. (1987) Nitrous oxide analgesia. Partial antagonism by naloxone and total reversal after periaqueductal gray lesions in the rat. Eur. J. Pharm. 142, 51–60.

    CAS  Google Scholar 

  20. Quock R. M., Walczak C. K., Henry R. J., and Chen D. C. (1990) Effect of subtype-selective opioid receptor blockers on nitrous oxide antinociception in rats. Pharmacol. Res. 22, 351–357.

    PubMed  CAS  Google Scholar 

  21. Hodges B. L., Gagnon M. J., Gillespie T. R., Breneisen J. R., O’Leary D. F., Hara S., and Quock R. M. (1994) Antagonism of nitrous oxide antinociception in the rat hot plate test by site-specific mu and epsilon opioid receptor blockage. JPET 269, 596–600.

    CAS  Google Scholar 

  22. Goto T., Marota J. J. A., and Crosby G. (1994) Nitrous oxide induces preemptive analgesia in the rat that is antagonized by halothane. Anesthesiology 80, 409–416.

    PubMed  CAS  Google Scholar 

  23. Guo T.-Z., Poree L., Golden W., Stein J., Fujinaga M., and Maze M. (1996) Antinociceptive response to nitrous oxide is mediated by supraspinal opiate and spinal α2 adrenergic receptors in the rat. Anesthesiology 85, 846–852.

    PubMed  CAS  Google Scholar 

  24. Smith E. H. and Rees J. M. H. (1981) The effects of naloxone on the analgesic activities of general anaesthetics. Experientia 37, 289–290.

    PubMed  CAS  Google Scholar 

  25. Quock R. M. and Graczak L. M. (1988) Influence of narcotic antagonist drugs upon nitrous oxide analgesia in mice. Brain Res. 440, 35–41.

    PubMed  CAS  Google Scholar 

  26. Quock R. M., Best J. A., Chen D. C., Vaughn L. K., Portoghese P. S., and Takemori A. E. (1990) Mediation of nitrous oxide analgesia in mice by spinal and supraspinal κ-opioid receptors. Eur. J. Pharm. 175, 97–100.

    CAS  Google Scholar 

  27. Quock R. M. and Mueller J. (1991) Protection by U-50,488H against β-chlornaltrexamine antagonism of nitrous oxide antinociception in mice. Brain Res. 549, 162–164.

    PubMed  CAS  Google Scholar 

  28. Quock R. M., Curtis B. A., Reynolds B. J., and Mueller J. L. (1993) Dose-dependent antagonism and potentiation of nitrous oxide antinociception by naloxone in mice. JPET 267, 117–122.

    CAS  Google Scholar 

  29. Chen D. C. and Quock R. M. (1990) A study of central opioid receptor involvement in nitrous oxide analgesia in mice. Anesth. Prog. 37, 181–185.

    PubMed  CAS  Google Scholar 

  30. Moody E. J., Mattson M, Newman A. H., Rice K. C., and Skolnick P. (1989) Stereospecific reversal of nitrous oxide analgesia by naloxone. Life Sci. 44, 703–709.

    PubMed  CAS  Google Scholar 

  31. Levine J. D., Gordon N. C., and Fields H. L. (1982) Naloxone fails to antagonize nitrous oxide analgesia for clinical pain. Pain 13, 165–169.

    PubMed  CAS  Google Scholar 

  32. Yagi M., Mashimo T., Kawaguchi T., and Yoshiya I. (1995) Analgesic and hypnotic effects of subanaesthetic concentrations of xenon in human volunteers: comparison with nitrous oxide. Br. J. Anaesth. 74, 670–673.

    PubMed  CAS  Google Scholar 

  33. Zacny J. P., Conran A. Pardo H., Coalson D. W. Black M., Klock P. A., and Klaft J. M. (1999) Effects of naloxone on nitrous oxide actions in healthy volunteers. Pain 83, 411–418.

    PubMed  CAS  Google Scholar 

  34. Ohara A., Mashimo T., Zhang P., Inagaki Y., Shibuta S., and Yoshiya I. (1997) A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth. Analg. 85, 931–936.

    PubMed  CAS  Google Scholar 

  35. Fukuhara N, Ishikawa T., Kinoshita H., Xiong L, and Nakanishi O. (1998) Central noradrenergic mediation of nitrous oxide-induced analgesia in rats. Can. J. Anaesth. 45, 1123–1129.

    PubMed  CAS  Google Scholar 

  36. Gillman M. A., Kok L., and Lichtigfeld F. J. (1980) Paradoxical effect of naloxone on nitrous oxide analgesia in man. Eur. J. Pharm. 61, 175–177.

    CAS  Google Scholar 

  37. Gillman M. A. and Lightgfeld F. J. (1983) Letter to the editor. Pain 17, 103–104.

    PubMed  CAS  Google Scholar 

  38. Gillman M. A. (1986) Pharmacokinetic differences could explain the lack of reversal of nitrous oxide analgesia by low-dose naloxone. Anesthesiology 65, 449–450.

    PubMed  CAS  Google Scholar 

  39. Willer J.-C., Bergeret S., Gaudy J.-H., and Dauthier C. (1985) Failure of naloxone to reverse the nitrous oxide-induced depression of a brain stem reflex: an electrophysiologic and double-blind study in humans. Anesthesiology 63, 467–472.

    PubMed  CAS  Google Scholar 

  40. Zacny J. P., Coalson D. W., Lichtor J. L., Yajnik S., and Thapar P. (1994) Effects of naloxone on the subjective and psychomotor effects of nitrous oxide in humans. Pharmacol. Biochem. Behav. 49, 573–578.

    PubMed  CAS  Google Scholar 

  41. Smith R. A., Wilson M., and Miller K. W. (1978) Naloxone has no effect on nitrous oxide anesthesia. Anesthesiology 49, 6–8.

    PubMed  CAS  Google Scholar 

  42. Hynes M. D. and Berkowitz B. A. (1979) Nitrous oxide stimulation of locomotor activity: Evidence for an opiate-like behavioral effect. JPET 209, 304–308.

    CAS  Google Scholar 

  43. Way W. L., Hosobuchi Y., Johnson B. H., Eger E. I., and Bloom F. E. (1984) Anesthesia does not increase opioid peptides in cerebrospinal fluid of humans. Anesthesiology 60, 43–45.

    PubMed  CAS  Google Scholar 

  44. Morris B. and Livingston A. (1984) Effects of nitrous oxide exposure on met-enkephalin levels in discrete areas of rat brain. Neurosci. Lett. 45, 11–14.

    PubMed  CAS  Google Scholar 

  45. Evans S. F., Stringer M., Bukht M. D. G., Thomas W. A., and Tomlin S. J. (1985) Nitrous oxide inhalation does not influence plasma concentrations of β-endorphin or metenkephalin-like immunoreactivity. Br. J. Anaesth. 57, 624–628.

    PubMed  CAS  Google Scholar 

  46. Quock R. M., Kouchich F. J., and Tseng L. (1985) Does nitrous oxide induce release of brain opioid peptides? Pharmacology 30, 95–99.

    PubMed  CAS  Google Scholar 

  47. Quock R. M., Kouchich F. J., and Tseng L. (1986) Influence of nitrous oxide upon regional brain levels of methionine-enkephalin-like immunoreactivity in rats. Brain Res. 16, 321–323.

    CAS  Google Scholar 

  48. Zuniga J. R., Knigge K. M., and Joseph S. A. (1986) Central β-endorphin release and recovery after exposure to nitrous oxide in rats. J. Oral Maxillofac. Surg. 44, 714–718.

    PubMed  CAS  Google Scholar 

  49. Zuniga J. R., Joseph S. A., and Knigge K. M. (1987) The effects of nitrous oxide on the central endogenous pro-opiomelanocortin system in the rat. Brain Res. 420, 57–65.

    PubMed  CAS  Google Scholar 

  50. Zuniga J. R., Joseph S. A., and Knigge K. M. (1987) The effects of nitrous oxide on the secretory activity of pro-opiomelanocortin peptides from basal hypothalamic cells attached to cytodex beads in a superfusion in vitro system. Brain Res. 420, 66–72.

    PubMed  CAS  Google Scholar 

  51. Finck A. D., Samaniego E., and Ngai S. H. (1995) Nitrous oxide selectively releases met5-enkephalin and met5-enkephalin-arg6-phe7 into canine third ventricular cerebrospinal fluid. Anesth. Analg. 80, 664–670.

    PubMed  CAS  Google Scholar 

  52. Fang F., Guo T. Z., Davies M. F., and Maze M. (1997) Opiate receptors in the periaqueductal gray mediate analgesic effect of nitrous oxide in rats. Eur. J. Pharm. 336, 137–141.

    CAS  Google Scholar 

  53. Hara S., Gagnon M. J., Quock R. M., and Shibuya T. (1994) Effect of opioid peptide antisera on nitrous oxide antinociception in rats. Pharmacol. Biochem. Behav. 48, 699–702.

    PubMed  CAS  Google Scholar 

  54. Branda E. M., Ramza J. T., Cahill F. J., Tseng L. F., and Quock R. M. (2000). Role of brain dynorphin in nitrous oxide antinociception in mice. Pharmacol. Biochem. Behav. 65, 217–221.

    PubMed  CAS  Google Scholar 

  55. Cahill F. J., Ellenberger E. A., Mueller J. L., Tseng L. F. and Quock R. M. (2000) Antagonism of nitrous oxide antinociception in mice by intrathecally administered antisera to endogenous opioid peptides. J. Biomed. Sci. 7, 299–303.

    PubMed  CAS  Google Scholar 

  56. McDonald C. E., Gagnon M. J., Ellenberger E. A., Hodges B. L., Ream J. K., Tousman S. A., and Quock R. M. (1994) Inhibitors o nitric oxide synthesis antagonize nitrous oxide antinociception in mice and rats. JPET 269, 601–608.

    CAS  Google Scholar 

  57. Hara S., Kuhns E. R., Ellengerger E. A., Mueller J. L., Shibuya T., Endo T., and Quock R. M. (1995) Involvement of nitric oxide in intracerebroventricular β-endorphin-induced neuronal release of methionine-enkephalin. Brain Res. 675, 190–194.

    PubMed  CAS  Google Scholar 

  58. Caton P. W., Tousman S. A., and Quock R. M. (1994) Involvement of nitric oxide in nitrous oxide anxiolysis in the elevated plus-maze. Pharmacol. Biochem. Behav. 48, 689–692.

    PubMed  CAS  Google Scholar 

  59. Gillman M. A. (1984) Possible mechanisms of action of nitrous oxide at the opioid receptor. Med. Hypotheses 15, 109–114.

    PubMed  CAS  Google Scholar 

  60. Ahmed M. S. and Byrne W. L. (1980) Opiate receptor binding studies influence of a reversible sulfhydryl agent, in Endogenous and Exogenous Opiate agonists and Antagonists (Way E. L., eds.), Pergamon, New York, NY, pp. 51–54.

    Google Scholar 

  61. Lawrence D. and Livingston A. (1981) Opiatelike analgesic activity in general anaesthetics. Br. J. Pharm. 73, 435–442.

    CAS  Google Scholar 

  62. Daras C., Cantrill R. C., and Gillman M. A. (1983) [3H]Naloxone displacement: evidence for nitrous oxide as opioid receptor agonist. Eur. J. Pharm. 89, 177–178.

    CAS  Google Scholar 

  63. Ori C., Ford-Rice F., and London E. D. (1989) Effects of nitrous oxide and halothane on μ and κ opioid receptors in guinea-pig brain. Anesthesiology 70, 541–544.

    PubMed  CAS  Google Scholar 

  64. Komatsu T., Shingu K., Tomemori N., Urabe N., and Mori K. (1981) Nitrous oxide activates the supraspinal pain inhibition system. Acta Anaesth. Scand. 25, 519–522.

    PubMed  CAS  Google Scholar 

  65. Nagasaka H., Taguchi M., Tsuchiyama M., Mizumoto Y., Hori K., Hayashi K., et al. (1997) Effect of nitrous oxide on spinal dorsal horn WDR neuronal activity in cats. Masui 46, 1190–1196.

    PubMed  CAS  Google Scholar 

  66. Miyazaki Y., Adachi T., Utsumi J., Shichino T., and Segawa H. (1999) Xenon has greater inhibitory effects on spinal dorsal horn neurons than nitrous oxide in spinal cord transected cats. Anesth. Analg. 88, 893–897.

    PubMed  CAS  Google Scholar 

  67. Zhang C., Davies M. F., Guo T.-Z., and Maze M. (1999) The analgesic action of nitrous oxide is dependent on the release of norepinephrine in the dorsal horn of the spinal cord. Anesthesiology 91, 1401–1407.

    PubMed  CAS  Google Scholar 

  68. Ohara A., Zhang P., Inagaki Y., Mashimo T., and Yoshiya I. (1995) Nitrous oxide analgesia: existence of acute tolerance and complete antagonism by yohimbine. Anesth. Resusci. 31, 37–39.

    CAS  Google Scholar 

  69. Sawamura S., Kingery W. S., Davies M. F., Agashe G. S., Clark J. D., Kobilka B. K., et al. (2000) Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of α2B adrenoceptors. J. Neurosci. 20, 9242–9251.

    PubMed  CAS  Google Scholar 

  70. Ohashi Y., Stowell J. M., Orii R., Maze M., and Fujinaga M. (2001) Neural nuclei activated by nitrous oxide in Fischer rats. Anesthesiology 95, A-721 (abstract).

    Google Scholar 

  71. Bourgoin S., Ternaux J. P., Boireau A., Héry F., and Hamon M. (1975) Effects of halothane and nitrous oxide anaesthesia on 5-HT turn-over in the rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 288, 109–121.

    CAS  Google Scholar 

  72. Mueller J. L. and Quock R. M. (1992) Contrasting influences of 5-hydroxytryptamine receptors in nitrous oxide antinociception in mice. Pharmacol. Biochem. Behav. 41, 429–432.

    PubMed  CAS  Google Scholar 

  73. Gao K., Kim Y.-H. H., and Mason P. (1997) Serotonergic pontomedullary neurons are not activated by antinociceptive stimulation in the periaqueductal gray. J. Neurosci. 17, 3285–3292.

    PubMed  CAS  Google Scholar 

  74. Gao K., Chen D. O., Genzen J. R., and Mason P. (1998) Activation of serotonergic neurons in the raphe magnus is not necessary for morphine analgesia. J. Neurosci. 18, 1860–1868.

    PubMed  CAS  Google Scholar 

  75. de Jong R. H., Robles R., and Morikawa K. (1969) Actions of halothane and nitrous oxide on dorsal horn neurons (“The spinal gate”). Anesthesiology 31, 205–212.

    PubMed  Google Scholar 

  76. de Jong R. H., Robles R., and Heavner J. E. (1970) Suppression of impulse transmission in the cat’s dorsal horn by inhalation anesthetics. Anesthesiology 32, 440–445.

    PubMed  Google Scholar 

  77. Kitahata L. M., Taub A., and Sato I. (1971) Lamina-specific suppression of dorsal horn unit activity by nitrous oxide and by hyperventilation. JPET 176, 101–108.

    CAS  Google Scholar 

  78. Taub A., Hoffert M., and Kitahata L. M. (1974) Lamina-specific suppression and acceleration of dorsal-horn unit activity by nitrous oxide: a statistical analysis. Anesthesiology 40, 24–31.

    PubMed  CAS  Google Scholar 

  79. Sugai N., Maruyama H., and Goto K. (1982) Effect of nitrous oxide alone or its combination with fentanyl on spinal reflexes in cats. Br. J. Anaesth. 54, 567–570.

    PubMed  CAS  Google Scholar 

  80. Shingu K., Osawa M., Omatsu Y., Komatsu T., Urabe N., and Mori K. (1981) Naloxone does not antagonize the anesthetic-induced depression of nociceptor-driven spinal cord response in spinal cats. Acat Anaesth. Sacnd. 25, 526–532.

    CAS  Google Scholar 

  81. Adachi T., Miyazaki Y., Kurata J., Utsumi J., Shinomura T., Nakao S., et al. (1996) Nitrous oxide decreases somatocardiac sympathetic A-and C-reflexes in anesthetized rats. Neurosci. Lett. 213, 57–60.

    PubMed  CAS  Google Scholar 

  82. Guo T.-Z., Davies M. F., Kingery W. S., Patterson A. J., Limbird L. E., and Maze M. (1999) Nitrous oxide produces antinociceptive response via α2B and/or α2C adrenoceptor subtypes in mice. Anesthesiology 90, 470–476.

    PubMed  CAS  Google Scholar 

  83. Hashimoto T., Maze M., Ohashi Y., and Fujinaga M. (2001) Nitrous oxide activates GABAergic neurons in the spinal cord in Fischer rat. Anesthesiology 95, 463–469.

    PubMed  CAS  Google Scholar 

  84. Nuseir K. and Proudfit H. K. (2000) Bidirectional modulation of nociception by GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit spinally projecting noradrenergic A7 neurons. Neuroscience 96, 773–783.

    PubMed  CAS  Google Scholar 

  85. Baba H., Goldstein P. A., Okamoto M., Kohno T. Ataka T., Yoshimura M., and Shimoji K. (2000) Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 2). Effects on somatodendritic sits of GABAergic neurons. Anesthesiology 92, 485–492.

    PubMed  CAS  Google Scholar 

  86. Orii R., Hashimoto T., Nelson L. M., Maze M., and Fujinaga M. (2001) Evidence for the involvement of spinal cord alpha-1 adrenoceptors in the antinociceptive effect of nitrous oxide in Fischer rats. Anesthesiology 95, A-745 (abstract).

    Google Scholar 

  87. Bylund D. B., Eikenberg D. C., Hieble J. P., Langer S. Z., Lefkowitz R. J., Minneman K. P., et al. (1994) International union of pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 46, 121–135.

    PubMed  CAS  Google Scholar 

  88. Surprenant A., Horstman D. A., Akbarali H., and Limbird L. E. (1992) A point mutation of the alpha 2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 257, 977–980.

    PubMed  CAS  Google Scholar 

  89. MacMillan L. B., Hein L., Smith M. S., Piascik M. T., and Limbird L. E. (1996) Central hypotensive effects of the α2a-adrenergic receptor subtype. Science 273, 801–803.

    PubMed  CAS  Google Scholar 

  90. Link R. E., Dsai K., Hein L., Stevens M. E., Chruscinski A., Bernstein D., et al. (1996) Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 273, 803–805.

    PubMed  CAS  Google Scholar 

  91. Millan M. J. (1997) The role of descending noradrenergic and serotonergic pathways in the modulation of nociception: focus on receptor multiplicity. Handbook Exp. Pharm. 130, 385–446.

    CAS  Google Scholar 

  92. Bloom F. E., Battenberg E., Rossier J., Ling N., Guillemin R. (1978) Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc. Natl. Acad. Sci. USA 75, 1591–1595.

    PubMed  CAS  Google Scholar 

  93. Gyulai F. E., Firestone L. L., Mintun M. A., and Winter P. M. (1997) In vivo imaging of nitrous oxide-induced changes in cerebral activation during noxious heat stimuli. Anesthesiology 86, 538–548.

    PubMed  CAS  Google Scholar 

  94. Quock R. M., Mueller J. L., and Vaughn L. K. (1993) Strain-dependent differences in responsiveness of mice to nitrous oxide (N2O) antinociception. Brain Res. 614, 52–56.

    PubMed  CAS  Google Scholar 

  95. Vaughn L. K. and Pruhs R. J. (1995) Strain-dependent variability in nitrous oxide withdrawal seizure frequency. Life Sci. 57, 1125–1130.

    PubMed  CAS  Google Scholar 

  96. Quock R. M., Mueller J. L., Vaughn L. K., and Belknap J. K. (1996) Nitrous oxide antinociception in BXD recombinant inbred mouse strains and identification of quantitative trait loci. Brain Res. 725, 23–29.

    PubMed  CAS  Google Scholar 

  97. Fender C., Fujinaga M., and Maze M. (2000) Strain differences in antinociceptive effect of nitrous oxide on tail flick test in rats. Anesth. Analg. 90, 195–199.

    PubMed  CAS  Google Scholar 

  98. Whitwam J. G., Morgan M., Hall G. M., and Petrie A. (1976) Pain during continuous nitrous oxide administration. Br. J. Anaesth. 48, 425–429.

    PubMed  CAS  Google Scholar 

  99. Rupreht J., Dworacek B., Bonke B., Dzoljic M. R., Van Eijndhoven J. H. M., and De Vlieger M. (1985) Tolerance to nitrous oxide decreases in volunteers. Acta Anaesth. Scand. 29, 635–638.

    PubMed  CAS  Google Scholar 

  100. Ramsay D. S., Brown A. C., and Woods S. C. (1992) Acute tolerance to nitrous oxide in humans. Pain 51, 367–373.

    PubMed  CAS  Google Scholar 

  101. Pirec V., Patterson T. H., Thapar P., Apfelbaum J. L., and Zacny J. P. (1995) Effects of subanesthetic concentrations of nitrous oxide on coldpressor pain in humans. Pharmacol. Biochem. Behav. 51, 323–329.

    PubMed  CAS  Google Scholar 

  102. Zacny J. P., Cho A. M., Coalson D. W., Rupani G., Young C. J., Klafta J. M., et al. (1996) Differential acute tolerance development to effects of nitrous oxide in humans. Neurosci. Lett. 209, 73–76.

    PubMed  CAS  Google Scholar 

  103. Berkowitz B. A., Finck A. D., Hynes M. D., and Ngai S. H. (1979) Tolerance to nitrous oxide analgesia in rats and mice. Anesthesiology 51, 309–312.

    PubMed  CAS  Google Scholar 

  104. Rupreht J., Ukponmwan O. E., Dworacek B., Admiraal P. V., and Dzoljic M. R. (1985) Enkephalinase inhibition prevented tolerance to nitrous oxide analgesia in rat. Acta Anaesth. Scand. 28, 617–620.

    Google Scholar 

  105. Avramov M. N., Shingu K., and Mori K. (1999) Progressive changes in electroencephalographic responses to nitrous oxide in humans: a possible acute drug tolerance. Anesth. Analg. 70, 369–374.

    Google Scholar 

  106. Mori K. and Winters W. D. (1975) Neural blockade of sleep and anesthesia. Int. Anesth. Clin. 13, 67–108.

    CAS  Google Scholar 

  107. Stevens J. E., Oshima E., and Mori K. (1983) Effects of nitrous oxide on the epileptogenic property of enflurane in cats. Br. J. Anaesth. 55, 145–154.

    PubMed  CAS  Google Scholar 

  108. Smith R. A., Winter P. M., Smith M., and Eger E. I. (1979) Rapidly developing tolerance to acute exposures to anesthetic agents. Anesthesiology 50, 496–500.

    PubMed  CAS  Google Scholar 

  109. Ramsay D. S., Omachi K., Leroux B. G., Seeley R. J., Prall C. W., and Woods S. C. (1999) Nitrous oxide-induced hypothermia in the rat: acute and chronic tolerance. Pharmacol. Biochem. Behav. 62, 189–196.

    PubMed  CAS  Google Scholar 

  110. Shingu K., Osawa M., Fukuda K., and Mori K. (1985) Acute tolerance to the analgesic action of nitrous oxide does not develop in rats. Anesthesiology 62, 502–504.

    PubMed  CAS  Google Scholar 

  111. Beitner-Johnson D., Guitart X., and Nestler E. J. (1991) Dopaminergic reward regions of Lewis and Fischer rats display different levels of tyrosine hydroxylase and other morphine-and cocaine-regulated phosphoproteins. Brain Res. 561, 147–150.

    PubMed  CAS  Google Scholar 

  112. Guitart X., Beitner-Johnson D., Marby D. W., Kosten T. A., and Nestler E. J. (1992) Fischer and Lewis rat strains differ in basal levels of neurofilament proteins and their regulation by chronic morphine in the mesolimbic dopamine system. Synapse 12, 242–253.

    PubMed  CAS  Google Scholar 

  113. Guitart X., Kogan J. H., Berhow M., Terwillinger R. Z., Aghajanian G. K., and Nestler E. J. (1993) Lewis and Fischer rat strains display differences in biochemical, electrophysiological and behavioral parameters: studies in the nucleus accumbens and locus coeruleus of drug naive and morphine-treated animals. Brain Res. 611, 7–17.

    PubMed  CAS  Google Scholar 

  114. Nylander I., Vlaskovska M., and Terenius L. (1995) Brain dynorphin and enkephalin systems in Fishcer and Lewis rats: effects of morphine tolerance and withdrawal. Brain Res. 683, 25–35.

    PubMed  CAS  Google Scholar 

  115. Vaccarino A. L. and Couret L. C. (1995) Relationship between hypothalamic-pituitary-adrenal activity and blockade of tolerance to morphine analgesia by pain: a strain comparison. Pain 63, 385–389.

    PubMed  CAS  Google Scholar 

  116. Ngai S. H. and Finck A. D. (1982) Prolonged exposure to nitrous oxide decreases opiate receptor density in rat brainstem. Anesthesiology 57, 26–30.

    PubMed  CAS  Google Scholar 

  117. Fitzgerald M. and Koltzenburg M. (1986) The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Res. 389, 261–270.

    PubMed  CAS  Google Scholar 

  118. van Praag H. and Frenk H. (1991) The development of stimulation-produced analgesia (SPA) in the rat. Dev. Brain Res. 64, 71–76.

    Google Scholar 

  119. Fujinaga M., Doone R., Davies M. F., and Maze M. (2000) Nitrous oxide lacks antinociceptive effect on tail flick test in newborn rats. Anesth. Analg. 91, 6–10.

    PubMed  CAS  Google Scholar 

  120. Ohashi Y., Stowell J. M., Hashimoto T., Nelson L. E., Maze M., and Fujinaga M. (2001) Effect of nitrous oxide on formalin-induced c-Fos expression in the spinal cord of adult and newborn Fischer rats. Anesthesiology 95, A-1287 (abstract).

    Google Scholar 

  121. Hashimoto T., Ohashi Y., Nelson L. E., Maze M., and Fujinaga M. (2002) Developmental variation in nitrous oxide induced c-Fos expression in Fischer rat spinal cord. Anesthesiology, 96, 249–251.

    PubMed  CAS  Google Scholar 

  122. Narsinghani U. and Anand K. J. S. (2000) Developmental neurobiology of pain in neonatal rats. Lab. Animal 29, 27–39.

    PubMed  Google Scholar 

  123. Goto T., Marota J. J. A., and Crosby G. (1996) Volatile anaesthetic antagonize nitrous oxide and morphine-induced analgesia in the rat. Br. J. Anesth. 76, 702–706.

    CAS  Google Scholar 

  124. Janiszewski D. J., Galinkin J. L., Klock P. A., Coalson D. W., Pardo H., and Zacny J. P. (1999) The effects of subanesthetic concentrations of sevoflurane and nitrous oxide, alone and in combination, on analgesia, mood, and psychomotor performance in healthy volunteers. Anesth. Analg. 88, 1149–1154.

    PubMed  CAS  Google Scholar 

  125. Williams F. G. and Beitz A. J. (1990) Ultra-structural morphometric analysis of enkephalin-immunoreactive terminals in the ventrocaudal periaqueductal gray: analysis of their relationship to periaqueductal grayraphe magnus projection neurons. Neuroscience 38, 381–394.

    PubMed  CAS  Google Scholar 

  126. Clark F. M. and Proudfit H. K. (1991) The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res. 547, 279–288.

    PubMed  CAS  Google Scholar 

  127. Proudfit H. K. and Clark F. M. (1991) The projections of locus coeruleus neurons o the spinal cord. Prog. Brain Res. 88, 123–141.

    PubMed  CAS  Google Scholar 

  128. Fritschy J. M. and Grzanna R. (1990) Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J. Comp. Neurol. 291, 553–582.

    PubMed  CAS  Google Scholar 

  129. Clark F. M., Yeomans D. C., and Proudfit H. K. (1991) The noradrenergic innervation of the spinal cord: differences between two substrains of Sprague-Dawley rats determined using retrograde tracers combined with immunocytochemistry. Neurosci. Lett. 125, 155–158.

    PubMed  CAS  Google Scholar 

  130. Clark F. M. and Proudfit H. K. (1992) Anatomical evidence for genetic differences in the innervation of the rat spinal cord by noradrenergic locus coeruleus neurons. Brain Res. 591, 44–53.

    PubMed  CAS  Google Scholar 

  131. Sluka K. A. and Westlund K. N. (1992) Spinal projections of the locus coeruleus and the nucleus subcoeruleus in the Harlan and the Sasco Sprague-Dawley rat. Brain Res. 579, 67–73.

    PubMed  CAS  Google Scholar 

  132. Clark F. M. and Proudfit H. K. (1993) The projections of noradrenergic neurons in the A5 catecholamine cell group to the spinal cord in the rat: anatomical evidence that A5 neurons modulate nociception. Brain Res. 616, 200–210.

    PubMed  CAS  Google Scholar 

  133. Luppi P.-H., Aston-Jones G., Akaoka H., Chouvet G., and Jouvet M. (1995) Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus Vulgaris leucoagglutinin. Neuroscience 65, 119–160.

    PubMed  CAS  Google Scholar 

  134. Aston-Jones G., Rajkowski J., Kubiak P., Valentino R. J., and Shipley M. T. (1996) Role of the locus coeruleus in emotional activation. Prog. Brain Res. 107, 379–402.

    PubMed  CAS  Google Scholar 

  135. Singewald N. and Philippu A. (1998) Release of neurotransmitters in the locus coeruleus. Prog. Neurobiol. 56, 237–267.

    PubMed  CAS  Google Scholar 

  136. Lowey A. D., Marson L., Parkinson D., Perry M. A., and Sawyer W. B. (1986) Descending noradrenergic pathways involved in the A5 depressor response. Brain Res. 386, 313–324.

    Google Scholar 

  137. Byrum C. E. and Guyenet P. G. (1987) Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J. Comp. Neurol. 261, 529–542.

    PubMed  CAS  Google Scholar 

  138. Bajic D., Van Bockstaele E. J., and Produfit H. K. (2001) Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience 104, 181–197.

    PubMed  CAS  Google Scholar 

  139. Proudfit H. K. and Monsen M. (1999) Ultrastructural evidence that substance P neurons form synapses with noradrenergic neurons in the A7 catecholamine cell group that modulate nociception. Neuroscience 91, 1499–1512.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Fujinaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujinaga, M., Maze, M. Neurobiology of nitrous oxide-induced antinociceptive effects. Mol Neurobiol 25, 167–189 (2002). https://doi.org/10.1385/MN:25:2:167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:25:2:167

Index Entries

Navigation