Skip to main content
Log in

Alphaviral vectors for gene transfer into neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alphaviruses are small, enveloped positive-strand RNA viruses that have been successfully transformed into expression vectors in the case of Semliki Forest virus (SFV), Sindbis virus (SIN), and Venezuelan equine encephalitis virus. Compared to other viral vectors, their advantages are easy and fast generation of recombinant viral particles, rapid onset, and high-level transgene expression. When applied to neuronal tissue, SFV and SIN vectors possess the additional advantage of efficiently and preferentially transducing neurons rather than non-neuronal cells. This article gives an overview of the biology of SFV and SIN, their generation into expression vectors, and their application in neurobiology, with particular emphasis on the transduction of hippocampal neurons. In addition, it describes the more recent development of alphaviral vectors with decreased or absent cytotoxicity and lowered transgene expression, temperature-controllable gene expression, and altered host-cell specificity in the central nervous system (CNS). Finally, the review evaluates the use of SFV and SIN vectors in hippocampal tissue cultures vs recombinant lentivirus, adenovirus type 5, adeno-associated virus type 2, and measles virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlesinger S. and Schlesinger M. J. (2001) Togaviridae: the viruses and their replication, in Fields Virology. (Knipe D. M. and Howley P. M., eds.) Lippincott Williams & Wilkins, Philadelphia, pp. 895–916.

    Google Scholar 

  2. Smithburn K. C. and Haddow A. J. (1944) Semliki Forest virus. I. Isolation and pathogenic properties. J. Immunol. 49, 141–147.

    Google Scholar 

  3. Taylor R. M., Hurlbut H. S., Work T. H., Kingsbury J. R., and Frothingham T. E. (1955) Sindbis virus: a newly recognized arthropod-transmitted virus. Am. J. Trop. Med. Hyg. 4, 844–846.

    PubMed  CAS  Google Scholar 

  4. Kubes V. and Rios F. A. (1939) The causative agent of infectious equine encephalomyelitis in Venezuela. Science 90, 21.

    Article  Google Scholar 

  5. Griffin D. E. (2001) Alphaviruses in Fields Virology. (Knipe D. M. and Howley P. M., eds.) Lippincott Williams & Wilkins, Philadelphia, pp. 917–962.

    Google Scholar 

  6. Bradish C. J., Allner K., and Maber H. B. (1971) The virulence of original and derived strains of Semliki Forest virus for mice, guinea pigs, and rabbits. J. Gen. Virol. 12, 141–160.

    Article  PubMed  CAS  Google Scholar 

  7. Fazakerley J. K., Pathak S., Scallan M., Amor S., and Dyson H. (1993) Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology 195, 627–637.

    Article  PubMed  CAS  Google Scholar 

  8. Oliver K. R., Scallan M. F., Dyson H., and Fazakerley J. K. (1997) Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity. J. Neurovirol. 3, 38–48.

    Article  PubMed  CAS  Google Scholar 

  9. Griffin D. E. (1998) A review of alphavirus replication in neurons. Neurosci. Biobehav. Rev. 22, 721–723.

    Article  PubMed  CAS  Google Scholar 

  10. Peränen J., Takkinen K., Kalkkinen N., and Kääriäinen L. (1988) Semliki Forest virus-specific non-structural protein nsP3 is a phosphoprotein. J. Gen. Virol. 69, 2165–2178.

    PubMed  Google Scholar 

  11. LaStarza M. W., Lemm J. A., and Rice C. M. (1994) Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minusstrand and subgenomic RNA synthesis. J. Virol. 68, 5781–5791.

    PubMed  CAS  Google Scholar 

  12. Davis N. L., Willis L. V., Smith J. F., and Johnston R. E. (1989) In vitro synthesis of infectious venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171, 189–204.

    Article  PubMed  CAS  Google Scholar 

  13. Liljeström P. and Garoff H. (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. BioTechnology 9, 1356–1361.

    Article  PubMed  Google Scholar 

  14. Xiong C., Levis R., Shen P., Schlesinger S., Rice C. M., and Huang H. V. (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191.

    Article  PubMed  CAS  Google Scholar 

  15. Bredenbeek P. J., Frolov I., Rice C. M., and Schlesinger S. (1993) Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J. Virol. 67, 6439–6446.

    PubMed  CAS  Google Scholar 

  16. Lundstrom K. (1999) Alphaviruses as tools in neurobiology and gene therapy. J. Recept. Signal Transduct. Res. 19, 673–686.

    PubMed  CAS  Google Scholar 

  17. Schlesinger S. (2001) Alphavirus vectors: development and potential therapeutic applications. Expert Opin. Biol. Ther. 1, 177–191.

    Article  PubMed  CAS  Google Scholar 

  18. Hahn C. S., Hahn Y. S., Braciale T. J., and Rice C. M. (1992) Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc. Natl. Acad. Sci. USA 89, 2679–2683.

    Article  PubMed  CAS  Google Scholar 

  19. Malherbe P., Kratzeisen C., Lundstrom K., Richards J. G., Faull R. L. M., and Mutel V. (1999) Cloning and functional expression of alternative spliced variants of the human metabotropic glutamate receptor 8. Mol. Brain Res. 67, 201–210.

    Article  PubMed  CAS  Google Scholar 

  20. Polo J. M., Belli B. A., Driver D. A., et al. (1999) Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc. Natl. Acad. Sci. USA 96, 4598–4603.

    Article  PubMed  CAS  Google Scholar 

  21. Schlesinger S. (1993) Alphaviruses — vectors for the expression of heterologous genes. Trends Biotechnol. 11, 18–22.

    Article  PubMed  CAS  Google Scholar 

  22. DiCiommo D. P. and Bremner R. (1998) Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J. Biol. Chem. 273, 18,060–18,066.

    Article  CAS  Google Scholar 

  23. Koller D., Ruedl C., Loetscher M., et al. (2001) A high-throughput alphavirus-based expression cloning system for mammalian cells. Nat. Biotechnol. 19, 851–855.

    Article  PubMed  CAS  Google Scholar 

  24. Atkins G. J., Sheahan B. J., and Liljeström P. (1999) The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J. Gen. Virol. 80, 2287–2297.

    PubMed  CAS  Google Scholar 

  25. Olkkonen V. M., Liljeström P., Garoff H., Simons K., and Dotti C. G. (1993) Expression of heterologous proteins in cultured rat hippocampal neurons using the Semliki Forest virus vector. J. Neurosci. Res. 35, 445–451.

    Article  PubMed  CAS  Google Scholar 

  26. Wittemann S., Mark M. D., Rettig J., and Herlitze S. (2000) Synaptic localization and presynaptic function of calcium channel β4-subunits in cultured hippocampal neurons. J. Biol. Chem. 275, 37,807–37,814.

    Article  CAS  Google Scholar 

  27. Ehrengruber M. U., Lundstrom K., Schweitzer C., Heuss C., Schlesinger S., and Gähwiler B. H. (1999) Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc. Natl. Acad. Sci. USA 96, 7041–7046.

    Article  PubMed  CAS  Google Scholar 

  28. Ehrengruber M. U., Hennou S., Büeler H., Naim H. Y., Déglon N., and Lundstrom K. (2001) Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol. Cell. Neurosci. 17, 855–871.

    Article  PubMed  CAS  Google Scholar 

  29. Lundstrom K., Richards J. G., Pink J. R., and Jenck F. (1999) Efficient in vivo expression of a reporter gene in rat brain after injection of recombinant replication-deficient Semliki Forest virus. Gene Ther. Mol. Biol. 3, 15–23.

    Google Scholar 

  30. Gwag B. J., Kim E. Y., Ryu B. R., et al. (1998) A neuron-specific gene transfer by a recombinant defective Sindbis virus. Mol. Brain Res. 63, 53–61.

    Article  PubMed  CAS  Google Scholar 

  31. Osten P., Khatri L., Perez J. L., et al. (2000) Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313–325.

    Article  PubMed  CAS  Google Scholar 

  32. Maletic-Savatic M., Malinow R., and Svoboda K. (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927.

    Article  PubMed  CAS  Google Scholar 

  33. Gähwiler B. H. (1981) Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods 4, 329–342.

    Article  PubMed  Google Scholar 

  34. Stoppini L., Buchs P.-A., and Muller D. (1991) A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182.

    Article  PubMed  CAS  Google Scholar 

  35. Malinow R., Hayashi Y., Maletic-Savatic M., Zaman S. H., Poncer J.-C., Shi S.-H., and Esteban J. A. (2000) Introduction of green fluorescent protein into hippocampal neurons through viral infection, in Imaging Neurons: A Laboratory Manual (Yuste R., Lanni F., and Konnerth A., eds.) CSHL Press, Cold Spring Harbor, pp. 58.1–58.8.

    Google Scholar 

  36. Ehrengruber M. U. and Lundstrom K. (2000) Alphavirus-mediated gene transfer into neurons, in Current Protocols in Neuroscience. (Crawley J. N., Gerfen C. R., Rogawski M. A., Sibley D. R., Skolnick P., and Wray S., eds.), John Wiley & Sons, New York, pp. 4.22.1–4.22.23.

    Google Scholar 

  37. Ehrengruber M. U. and Lundstrom K. (2002) Semliki Forest virus and Sindbis virus vectors, in Current Protocols in Human Genetics. (Dracopoli N. C., Haines J. L., Korf B. R., et al. eds.) John Wiley & Sons, New York, pp. 12.2.1–12.2.23.

    Google Scholar 

  38. Lundstrom K., Schweitzer C., Richards J. G., Ehrengruber M. U., Jenck F., and Mülhardt C. (1999) Semliki Forest virus vectors for in vitro and in vivo applications. Gene Ther. Mol. Biol. 4, 23–31.

    Google Scholar 

  39. Lundstrom K., Rotmann D., Hermann D., Schneider E. M., and Ehrengruber M. U. (2001) Novel mutant Semliki Forest virus vectors: gene expression and localization studies in neuronal cells. Histochem. Cell Biol. 115, 83–91.

    PubMed  CAS  Google Scholar 

  40. Shi S.-H., Hayashi Y., Petralia R. S., Zaman S. H., Wenthold R. J., Svoboda K., and Malinow R. (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816.

    Article  PubMed  CAS  Google Scholar 

  41. Ehrengruber M. U., Muhlebach S. G., Söhrman S., Leutenegger C., M., Lester H. A., and Davidson N. (2000) Modulation of early growth response (EGR) transcription factor-dependent gene expression by using recombinant adenovirus. Gene 258, 63–69.

    Article  PubMed  CAS  Google Scholar 

  42. Nehring R. B., Horikawa R. P. M., El Far O., et al. (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J. Biol. Chem. 275, 35,185–35,191.

    Article  CAS  Google Scholar 

  43. Lundstrom K., Mills A., Buell G., Allet E., Adami N., and Liljeström P. (1994) High-level expression of the human neurokinin-1 receptor in mammalian cell lines using the Semliki Forest virus expression system. Eur. J. Biochem. 224, 917–921.

    Article  PubMed  CAS  Google Scholar 

  44. Monastyrskaia K., Lundstrom K., Plahl D., Acuna G., Schweitzer C., Malherbe P., and Mutel V. (1999) Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction. Br. J. Pharmacol. 128, 1027–1034.

    Article  PubMed  CAS  Google Scholar 

  45. Schweitzer C., Kratzeisen C., Adam G., et al. (2000) Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using Semliki Forest virus vectors. Neuropharmacology 39, 1700–1706.

    Article  PubMed  CAS  Google Scholar 

  46. Lundstrom K., Vargas A., and Allet B. (1995) Functional activity of a biotinylated human neurokinin 1 receptor fusion expressed in the Semliki Forest virus system. Biochem. Biophys. Res. Commun. 208, 260–266.

    Article  PubMed  CAS  Google Scholar 

  47. Scheer A., Björklöf K., Cotecchia S., and Lundstrom K. (1999) Expression of the α1b-adrenergic receptor and G protein subunits in mammalian cell lines using the Semliki Forest virus expression system. J. Recept. Signal Transduct. Res. 19, 369–378.

    Article  PubMed  CAS  Google Scholar 

  48. Gorrie G. H., Vallis Y., Stephenson A., Whitfield J., Browning B., Smart T. G., and Moss S. J. (1997) Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J. Neurosci. 17, 6587–6596.

    PubMed  CAS  Google Scholar 

  49. Dryga S. A., Dryga O. A., and Schlesinger S. (1997) Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. Virology 228, 74–83.

    Article  PubMed  CAS  Google Scholar 

  50. Agapov E. V., Frolov I., Lindenbach B. D., Pragai B. M., Schlesinger S., and Rice C. M. (1998) Non-cytopathogenic Sindbis RNA vectors for heterologous gene expression. Proc. Natl. Acad. Sci. USA 95, 12,989–12,994.

    Article  CAS  Google Scholar 

  51. Perri S., Driver D. A., Gardner J. P., Sherrill S., Belli B. A., Dubensky T. W., Jr., and Polo J. M. (2000) Replicon vectors derived from Sindbis virus and Semliki Forest virus that establish persistent replication in host cells. J. Virol. 74, 9802–9807.

    Article  PubMed  CAS  Google Scholar 

  52. Rikkonen M. (1996) Functional significance of the nuclear-targeting and NTP-binding motifs of Semliki Forest virus nonstructural protein nsP2. Virology 218, 352–361.

    Article  PubMed  CAS  Google Scholar 

  53. Fazakerley J. K., Boyd A., Mikkola M. L., and Kääriäinen L. (2002) A single amino acid change in the nuclear localization sequence of the nsP2 protein affects the neurovirulence of Semliki Forest virus. J. Virol. 76, 392–396.

    Article  PubMed  CAS  Google Scholar 

  54. Mazzucchelli C., Vantaggiato C., Ciamei A., et al. (2002) Knockout of ERK1 MAP kinase enchances synaptic plasticity in the striatum and facilitates striatal-mediated lerning and memory. Neuron 34, 807–820.

    Article  PubMed  CAS  Google Scholar 

  55. Hahn Y. S., Grakoui A., Rice C. M., Strauss E. G., and Strauss J. H. (1989) Mapping of RNA-temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4. J. Virol. 63, 1194–1202.

    PubMed  CAS  Google Scholar 

  56. Hahn Y. S., Strauss E. G., and Strauss J. H. (1989) Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. J. Virol. 63, 3142–3150.

    PubMed  CAS  Google Scholar 

  57. Boorsma M., Nieba L., Koller D., Bachmann M. F., Bailey J. E., and Renner W. A. (2000) A temperature-regulated replicon-based DNA expression system. Nature Biotech. 18, 429–432.

    Article  CAS  Google Scholar 

  58. Lundstrom K., Ziltener P., Hermann D., Schweitzer C., Richards J. G., and Jenck F. (2001) Improved Semliki Forest virus vectors for receptor research and gene therapy. J. Recept. Signal Transduct. Res. 21, 55–70.

    Article  PubMed  CAS  Google Scholar 

  59. Ehrengruber M. U., Doupnik C. A., Xu Y., Garvey J., Jasek M. C., Lester H. A., and Davidson N. (1997) Activation of heteromeric G proteingated inward rectifier K+ channels overex-pressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 7070–7075.

    Article  PubMed  CAS  Google Scholar 

  60. Ehrengruber M. U., Ehler E., Billeter M. A., and Naim H. Y. (2002) Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion. J. Virol. 76, 5720–5728.

    Article  PubMed  CAS  Google Scholar 

  61. Strauss J. H. and Strauss E. G. (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562.

    PubMed  CAS  Google Scholar 

  62. Altman-Hamamdzic S., Groseclose C., Ma J.-X., Hamamdzic D., Vrindavanam N. S., Middaugh L. D., Parratto N. P., and Sallee F. R. (1997) Expression of β-galactosidase in mouse brain: utilization of a novel nonreplicative Sinbis virus vector as a neuronal gene delivery system. Gene Ther. 4, 815–822.

    Article  PubMed  CAS  Google Scholar 

  63. Knight D. E. (2000) Secreation from bovine chromaffin cells acutely expressing exogenous proteins using a recombinant Semliki Forest virus containing an EGFP reporter. Mol. Cell. Neurosci. 14, 486–505.

    Article  Google Scholar 

  64. Allet B., Hochmann A., Martinoiu I., Berger A., Missotten M., Antonsson B., et al. (1996) Dissecting processing and apoptotic activity of a cysteine protease by mutant analysis. J. Cell Biol. 135, 479–486.

    Article  PubMed  CAS  Google Scholar 

  65. Kyttälä A., Heinonen O., Peltonen L., and Jalanko A. (1998) Expression and endocytosis of lysosomal aspartylglucosaminidase in mouse primary neurons. J. Neurosci. 18, 7756.

    Google Scholar 

  66. Park D. S., Levine B., Ferrari G., and Greene L. A. (1997) Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J. Neurosci. 17, 8975–8983.

    PubMed  CAS  Google Scholar 

  67. Hayashi Y., Shi S.-H., Esteban J. A., Piccini A., Poncer J.-C., and Malinow R. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267.

    Article  PubMed  CAS  Google Scholar 

  68. Voets T., Toonen R. F., Brian E. C., de Wit H., Moser T., Rettig J., Südhof T. C., Neher E., and Verhage M. (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31, 581–591.

    Article  PubMed  CAS  Google Scholar 

  69. Ashery U., Varoqueaux F., Voets T., Betz A., Thakur P., Koch H., Neher E., Brose N., and Rettig J. (2000) Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J. 19, 3586–3596.

    Article  PubMed  CAS  Google Scholar 

  70. Chheda M. G., Ashery U., Thakur P., Rettig J., and Sheng Z. H. (2002) Phophorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat. Cell Biol. 3, 331–338.

    Article  CAS  Google Scholar 

  71. Lao G., Scheuss V., Gerwin C. M., Su Q., Mochida S., Rettig J., and Sheng Z. H. (2000) Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly. Neuron 25, 191–201.

    Article  PubMed  CAS  Google Scholar 

  72. Okada M., Onodera K., Van Renterghem C., Sieghart W., and Takahashi T. (2000) Functional correlation of GABAA receptor α subunits expression with the properties of IPSCs in the developing thalamus. J. Neurosci. 20, 2202–2208.

    PubMed  CAS  Google Scholar 

  73. Werner P., Kawashima E., Reid J., Hussy N., Lundstrom K., Buell G., Humbert Y., and Jones K. A. (1994) Organization of the mouse 5-HT3 receptor gene and functional expression of two splice variants. Mol. Brain Res. 26, 233–241.

    Article  PubMed  CAS  Google Scholar 

  74. Khakh B. S., Smith W. B., Chiu C. S., Ju D., Davidson N., and Lester H. A. (2001) Activation-dependent changes in receptor distribution and dendritic morphology in hippocampal neurons expressing P2X2-green fluorescent protein receptors. Proc. Natl. Acad. Sci. USA 98, 5288–5293.

    Article  PubMed  CAS  Google Scholar 

  75. Shi S.-H., Hayashi Y., Esteban J., and Malinow R. (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343.

    Article  PubMed  CAS  Google Scholar 

  76. Zhu J. J., Esteban J. A., Hayashi Y., and Malinow R. (2000) Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098–1106.

    Article  PubMed  CAS  Google Scholar 

  77. Okada T., Yamada N., Kakegawa W., Tsuzuki T., Kawamura M., Nawa H., Iino M., and Ozawa S. (2001) Sindbis viral-mediated expression of Ca2+-permeable AMPA receptors at hippocampal CA1 synapses and induction of NMDA receptor-independent long-term potentiation. Eur. J. Neurosci. 13, 1635–1643.

    Article  PubMed  CAS  Google Scholar 

  78. Iwakura Y., Nagano T., Kawamura M., Horikawa H., Ibaraki K., Takei N., and Nawa H. (2001) N-methyl- d -aspartate-induced α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor down-regulation involves interaction of the carboxyl terminus of GluR2/3 with Pick1: ligand-binding studies using Sindbis vectors carrying AMPA receptor decoys. J. Biol. Chem. 276, 40,025–40,032.

    Article  CAS  Google Scholar 

  79. Takamori S., Rhee J. S., Rosenmund C., and Jahn R. (2001) Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J. Neurosci. 21, RC182:1–6.

    Google Scholar 

  80. Takamori S., Rhee J. S., Rosenmund C., and Jahn R. (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194.

    Article  PubMed  CAS  Google Scholar 

  81. Owe-Larsson B., Berglund M., Kristensson K., Garoff H., Larhammar D., and Low P. (1999) Perturbation of the synaptic release machinery in hippocampal neurons by overexpression of SNAP-25 with the Semliki Forest virus vector. Eur. J. Neurosci. 11, 1981–1987.

    Article  PubMed  CAS  Google Scholar 

  82. Wei S., Xu T., Ashery U., Kollewe A., Matti U., Antonin W., Rettig J., and Neher E. (2000) Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO J. 19, 1279–1289.

    Article  PubMed  CAS  Google Scholar 

  83. Tobaben S., Thakur P., Fernandez-Chacon R., Südhof T. C., Rettig J., and Stahl B. (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31, 687–699.

    Article  Google Scholar 

  84. Okubo Y., Kakizawa S., Hirose K., and Iino M. (2001) Visualization of IP3 dynamics reveals a novel AMPA receptor-triggered IP3 production pathway mediated by voltage-dependent Ca2+ influx in Purkinje cells. Neuron 32, 113–122.

    Article  PubMed  CAS  Google Scholar 

  85. Simons M., De Strooper B., Multhaup G., Tienari P. J., Dotti C. G., and Beyreuther K. (2001) Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J. Neurosci. 16, 899–908.

    Google Scholar 

  86. Cook D. G., Sung J. C., Golde T. E., et al. (1996) Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc. Natl. Acad. Sci. USA 93, 9223–9228.

    Article  PubMed  CAS  Google Scholar 

  87. Ulmanen I., Peranen J., Tenhunen J., Tilgmann C., Karhunen T., Panula P., Bernasconi L., Aubry J. P., and Lundstrom K. (1997) Expresion and intracellular localization of catechol O-methyltransferase in transfected mammalian cells. Eur. J. Biochem. 243, 452–459.

    Article  PubMed  CAS  Google Scholar 

  88. Hama E., Shirotani K., Masumoto H., Sekine-Aizawa Y., Aizawa H., and Saido T. C. (2001) Clearance of extracellular and cell-associated amyloid beta peptide through viral expression of neprilysin in primary neurons (Tokyo). J. Biochem 130, 721–726.

    PubMed  CAS  Google Scholar 

  89. de Hoop M., von Poser C., Lange C., Ikonen E., Hunziker W., and Dotti C. G. (1995) Intracellular routing of wild-type and mutated polymeric immunoglobulin receptor in hippocampal neurons in culture. J. Cell Biol. 130, 1447–1459.

    Article  PubMed  Google Scholar 

  90. Frolov I., Agapov E., Hoffman T. A., Prágai B. M., Lippa M., Schlesinger S., and Rice C. M. (1999) Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J. Virol. 73, 3854–3865.

    PubMed  CAS  Google Scholar 

  91. Berglund P., Sjöberg M., Garoff H., et al. (1993) Semliki Forest virus expression system: production of conditionally infectious recombinant particles. BioTechnology 11, 916–920.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus U. Ehrengruber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrengruber, M.U. Alphaviral vectors for gene transfer into neurons. Mol Neurobiol 26, 183–201 (2002). https://doi.org/10.1385/MN:26:2-3:183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:26:2-3:183

Index Entries

Navigation