Skip to main content
Log in

Phosphorylation of AMPA receptors

Mechanisms and synaptic plasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor is densely distributed in the mammalian brain and is primarily involved in mediating fast excitatory synaptic transmission. Recent studies in both heterologous expression systems and cultured neurons have shown that the AMPA receptor can be phosphorylated on their subunits (GluR1, GluR2, and GluR4). All phosphorylation sites reside at serine, threonine, or tyrosine on the intracellular C-terminal domain. Several key protein kinases, such as protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and tyrosine kinases (Trks; receptor or nonreceptor family Trks) are involved in the site-specific regulation of the AMPA receptor phosphorylation. Other glutamate receptors (N-methyl-d-aspartate receptors and metabotropic glutamate receptors) also regulate AMPA receptors through a protein phosphorylation mechanism. Emerging evidence shows that as a rapid and short-term mechanism, the dynamic protein phosphorylation directly modulates the electrophysiological, morphological (externalization and internalization trafficking and clustering), and biochemical (synthesis and subunit composition) properties of the AMPA receptor, as well as protein-protein interactions between the AMPA receptor subunits and various intracellular interacting proteins. These modulations underlie the major molecular mechanisms that ultimately affect many forms of synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenamyre J. T. and Porter R. H. (1994) Anatomy and physiology of glutamate in the CNS. Neurology 44, S7-S13.

    PubMed  CAS  Google Scholar 

  2. Michaelis E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369–415.

    Article  PubMed  CAS  Google Scholar 

  3. Dingledine R., Borges K., Bowie D., and Traynelis S. F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61.

    PubMed  CAS  Google Scholar 

  4. Conn P. J. and Pin J. P. (1997) Pharmacology and function of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    Article  PubMed  CAS  Google Scholar 

  5. Schoepfer R., Monyer H., Sommer B., et al. (1994) Molecular biology of glutamate receptors. Prog. Neurobiol. 42, 353–357.

    Article  PubMed  CAS  Google Scholar 

  6. Ozawa S., Kamiya H., and Tsuzuki K. (1998) Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581–618.

    Article  PubMed  CAS  Google Scholar 

  7. Ascher P. and Nowak L. (1987) Electrophysiological studies of NMDA receptors. Trends Neurosci. 10, 284–287.

    Article  CAS  Google Scholar 

  8. MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., and Barker J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321, 519–522.

    Article  PubMed  CAS  Google Scholar 

  9. Hollmann M., Hartley M., and Heinemann S. (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851–853.

    Article  PubMed  CAS  Google Scholar 

  10. Albin R. L., Makowiec R. L., Hollingsworth Z. R., Dure L. S., Penney J. B., and Young A. B. (1992) Excitatory amino acid binding sites in the basal ganglia of the rat: a quantitative autoradiographic study. Neuroscience 46, 35–48.

    Article  PubMed  CAS  Google Scholar 

  11. Standaert D. G., Testa C. M., Penney J. B., and Young A. B. (1994) Organization of N-methyl-d-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J. Comp. Neurol. 343, 1–16.

    Article  PubMed  CAS  Google Scholar 

  12. Mansour M., Nagarajan N., Nehring R. B., Clements J. D., and Rosenmund C. (2001) Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron 32, 841–853.

    Article  PubMed  CAS  Google Scholar 

  13. Greger I. H., Khatri L., Kong X., and Ziff E. B. (2003) AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40, 763–774.

    Article  PubMed  CAS  Google Scholar 

  14. Smart T. G. (1997) Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol. 42, 358–367.

    Article  Google Scholar 

  15. Swope S. L., Moss S. J., Raymond L. A., and Huganir R. L. (1999) Regulation of ligand-gated ion channels by protein phosphorylation. Adv. Second Messenger Phosphoprotein Res. 33, 49–78.

    PubMed  CAS  Google Scholar 

  16. Carvalho A. L., Duarte C. B., and Carvalho A. P. (2000) Regulation of AMPA receptors by phosphorylation. Neurochem. Res. 25, 1245–1255.

    Article  PubMed  CAS  Google Scholar 

  17. Roche K. W., O’Brien R. J., Mammen A. L., Bernhardt J., and Huganir R. L. (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  18. Mammen A. L., Kameyama K., Roche K. W., and Huganir R. L. (1997) Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272, 32,528–32,533.

    Article  CAS  Google Scholar 

  19. Strack S., Choi S., Lovinger D. M., and Colbran R. J. (1997) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J. Biol. Chem. 272, 13,467–13,470.

    Article  CAS  Google Scholar 

  20. Vinade L. and Dosemeci A. (2000) Regulation of the phosphorylation state of the AMPA receptor GluR1 subunit in the postsynaptic density. Cell. Mol. Neurobiol. 20, 451–463.

    Article  PubMed  CAS  Google Scholar 

  21. Lisman J. E. and Zhabotinsky A. M. (2001) A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201.

    Article  PubMed  CAS  Google Scholar 

  22. Barria A., Derkach V., and Soderling T. (1997) Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272, 32,727–32,730.

    Article  CAS  Google Scholar 

  23. Lledo P. M., Hjelmstad G., Mukherji S., Soderling T., Malenka R., and Nicoll R. (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. USA 92, 11,175–11,179.

    Article  CAS  Google Scholar 

  24. Poncer J. C., Esteban J. A., and Malinow R. (2002) Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 22, 4406–4411.

    PubMed  CAS  Google Scholar 

  25. Lisman J. E. and Zhabotinsky A. M. (2001) A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuda S., Mikawa S., and Hirai H. (1999) Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73, 1765–1768.

    Article  PubMed  CAS  Google Scholar 

  27. McDonald B. J., Chung H. J., and Huganir R. L. (2001) Identification of protein kinase C phosphorylation sites within the AMPA receptor GluR2 subunit. Neuropharmacology 41, 672–679.

    Article  PubMed  CAS  Google Scholar 

  28. Carvalho A. L., Kameyama K., and Huganir R. L. (1999) Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J. Neurosci. 19, 4748–4754.

    PubMed  CAS  Google Scholar 

  29. Pearson R. B. and Kemp B. E. (1991) Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 200, 62–81.

    Article  PubMed  CAS  Google Scholar 

  30. Moss S. J., Blackstone C. D., and Huganir R. L. (1993) Phosphorylation of recombinant non-NMDA glutamate receptors on serine and tyrosine residues. Neurochem. Res. 18, 105–110.

    Article  PubMed  CAS  Google Scholar 

  31. Rong Y., Lu X., Bernard A., Khrestchatisky M., and Baudry M. (2001) Tyrosine phosphorylation of ionotropic glutamate receptors by Fyn or Src differentially modulates their susceptibility to calpain and enhances their binding to spectrin and PSD-95. J. Neurochem. 79, 382–390.

    Article  PubMed  CAS  Google Scholar 

  32. Wu K., Len G. W., McAuliffe G., Ma C., Tai J. P., Xu F., and Black I. B. (2004) Brain-derived neurotropic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor mechanism. Mol. Brain Res. 130, 178–186.

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi T. and Huganir R. L. (2004) Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases. J. Neurosci. 24, 6152–6160.

    Article  PubMed  CAS  Google Scholar 

  34. Ahmadian G., Ju W., Liu L., et al. (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050.

    Article  PubMed  CAS  Google Scholar 

  35. Lau L. F. and Huganir R. L. (1995) Differential tyrosine phosphorylation of N-methyl-d-aspartate receptor subunits. J. Biol. Chem. 170, 20,036–20,041.

    Google Scholar 

  36. Lynch G. (2004) AMPA receptor modulators as cognitive enhancers. Curr. Opin. Pharmacol. 4, 4–11.

    Article  PubMed  CAS  Google Scholar 

  37. Huang C. C., You J. L., Lee C. C., and Hsu K. S. (2003) Insulin induces a novel form of postsynaptic mossy fiber long-term depression in the hippocampus. Mol. Cell. Neurosci. 24, 831–841.

    Article  PubMed  CAS  Google Scholar 

  38. Raymond L. A., Blackstone C. D., and Huganir R. L. (1993) Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361, 637–641.

    Article  PubMed  CAS  Google Scholar 

  39. Wang L. Y., Taverna F. A., Huang X. P., MacDonald J. F., and Hampson D. R. (1993) Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase. Science 259, 1173–1175.

    Article  PubMed  CAS  Google Scholar 

  40. Basiry S. S., Mendoza P., Lee P. D., and Raymond L. A. (1999) Agonist-induced changes in substituted cysteine accessibility reveal dynamic extracellular structure of M3–M4 loop of glutamate receptor GluR6. J. Neurosci. 19, 644–652.

    PubMed  CAS  Google Scholar 

  41. Cho K., Francis J. C., Hirbec H., et al. (2003) Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors. J. Physiol. 548, 723–730.

    Article  PubMed  CAS  Google Scholar 

  42. Hirbec H., Francis J., Lauri S., et al. (2003) Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 27, 625–638.

    Article  Google Scholar 

  43. Banke T. G., Bowie D., Lee H. K., Huganir R. L., Schousboe A., and Traynelis S. F. (2000) Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102.

    PubMed  CAS  Google Scholar 

  44. Derkach V., Barria A., and Soderling T. R. (1999) Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274.

    Article  PubMed  CAS  Google Scholar 

  45. Estaban J. A., Shi S. H., Wilson C., Nuriya M., Huganir R. L., and Malinow R. (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6, 136–143.

    Article  CAS  Google Scholar 

  46. Braithwaite S. P., Meyer G., and Henley J. M. (2000) Interactions between AMPA receptors and intracellular proteins. Neuropharmacology 39, 919–930.

    Article  PubMed  CAS  Google Scholar 

  47. Gomes A. R., Correia S. S., Carvalho A. L., and Duarte C. B. (2003) Regulation of AMPA receptor activity, synaptic targeting and recycling: role in synaptic plasticity. Neurochem. Res. 28, 1459–1473.

    Article  PubMed  CAS  Google Scholar 

  48. Collingridege G. L. and Isaac J. T. (2003) Functional roles of protein interactions with AMPA and kainate receptors. Neurosci. Res. 47, 3–15.

    Article  CAS  Google Scholar 

  49. Leonard A. S., Davare M. A., Horne M. C., Garner C. C., and Hell J. Q. (1998) SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J. Biol. Chem. 273, 19,518–19,524.

    CAS  Google Scholar 

  50. Tavalin S. J., Colledge M., Hell J. W., Langeberg L. K., Huganir R. L., and Scott J. D. (2002) Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J. Neurosci. 22, 3044–3051.

    PubMed  CAS  Google Scholar 

  51. College M., Dean R. A., Scott G. K., Langeberg L. K., Huganir R. L., and Scott J. D. (2000) Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27, 107–119.

    Article  Google Scholar 

  52. Snyder E. M., Colledge M., Crozier R. A., Chen W. S., Scott J. D., and Bear M. F. (2005) Role for A kinase anchoring proteins (AKAPs) in glutamate receptor trafficking and long-term synaptic depression. J. Biol. Chem. 280, 16,962–16,968.

    Article  CAS  Google Scholar 

  53. Hossain M. A., Russell J. C., O’Brien R., and Laterra J. (2004) Neuronal pentraxin 1: a novel mediator of hypoxic-ischemic injury in neonatal brain. J. Neurosci. 24, 4187–4196.

    Article  PubMed  CAS  Google Scholar 

  54. Dong H., O’Brien R. L., Fung E. L., Lanahan A. A., Worley P. F., and Huganir R. L. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284.

    Article  PubMed  CAS  Google Scholar 

  55. Braithwaite S. P., Xia H., and Malenka R. C. (2002) Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proc. Natl. Acad. Sci. USA 99, 7096–7101.

    Article  PubMed  CAS  Google Scholar 

  56. Nishimune A., Isaac J. T., Molnar E., et al. (1998) NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97.

    Article  PubMed  CAS  Google Scholar 

  57. Osten P., Srivastava S., Inman G. J., et al. (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha-and beta-SNAPs. Neuron 21, 99–110.

    Article  PubMed  CAS  Google Scholar 

  58. Song I., Kamboj S., Xia J., Dong H., Liao D., and Huganir R. L. (1998) Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393–400.

    Article  PubMed  CAS  Google Scholar 

  59. Xia J., Zhang X., Staudinger J., and Huganir R. L. (1999) Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22, 179–181.

    Article  PubMed  CAS  Google Scholar 

  60. Chung H. J., Xia J., Scannevin R. H., Zhang X., and Huganir R. L. (2000) Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258–7267.

    PubMed  CAS  Google Scholar 

  61. Hirai H. (2001) Modification of AMPA receptor clustering regulates cerebellar synaptic plasticity. Neurosci. Res. 39, 261–267.

    Article  PubMed  CAS  Google Scholar 

  62. Seidenman K. J., Steinberg J. P., Huganir R., and Malinow R. (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J. Neurosci. 23, 9220–9228.

    PubMed  CAS  Google Scholar 

  63. Kim C. H., Chung H. J., Lee H. K., and Huganir R. L. (2001) Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc. Natl. Acad. Sci. USA 98, 11,725–11,730.

    CAS  Google Scholar 

  64. Lee H. K., Barbarosie M., Kameyama K., Bear M. F., and Huganir R. L. (2000) Regulation of distinct receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959.

    Article  PubMed  CAS  Google Scholar 

  65. Kameyama K., Lee H. K., Bear M. F., and Huganir R. L. (1998) Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163–1175

    Article  PubMed  CAS  Google Scholar 

  66. Lee H. K., Kameyama K., Huganir R. L., and Bear M. F. (1998) NMDA induces long-term synaptic depression and dephoshorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21, 1151–1162.

    Article  PubMed  CAS  Google Scholar 

  67. Huang C. C., Liang Y. C., and Hsu K. S. (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J. Biol. Chem. 276, 48,108–48,117.

    CAS  Google Scholar 

  68. Albin R. L., Young A. B., and Penney J. B. (1990) The functional anatomy of basal ganglia disorders. TINS 12, 366–375.

    Google Scholar 

  69. McGeorge A. J. and Faull R. L. M. (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29, 503–537.

    Article  PubMed  CAS  Google Scholar 

  70. Bernard V., Gardiol A., Faucheux B., Bloch B., Agid Y., and Hirsch E. C. (1996) Expression of glutamate receptors in the human and rat basal ganglia: effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. J. Comp. Neurol. 368, 553–568.

    Article  PubMed  CAS  Google Scholar 

  71. Bernard V., Somogyi P., and Bolam J. P. (2997) Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J. Neurosci. 17, 819–833.

    Google Scholar 

  72. Kondo M., Okabe S., Sumino R., and Okado H. (2000) A high GluR1: GluR2 expression ratio is correlated with expression of Ca2+-binding proteins in rat forebrain neurons. Eur. J. Neurosci. 12, 2812–2822.

    Article  PubMed  CAS  Google Scholar 

  73. Hu H. J., Chen L. W., Yung K. K., and Chan Y. S. (2004) Differential expression of AMPA receptor subunits in substance P receptor-containing neurons of the caudate-putamen of rats. Neurosci. Res. 49, 281–288.

    Article  PubMed  CAS  Google Scholar 

  74. Wang J. Q. and McGinty J. F. (1999) Glutamate/dopamine interactions mediate the effects of psychostimulant drugs. Addiction Biology 4, 141–150.

    Article  CAS  Google Scholar 

  75. Lovinger D. M., Partridge J. G., and Tang K. C. (2003) Plastic control of striatal glutamatergic transmission by ensemble actions of several neurotransmitters and targets for drugs of abuse. Ann N Y Acad Sci. 1003, 226–240.

    Article  PubMed  CAS  Google Scholar 

  76. Wang W. W., Cao R., Rao Z. R., and Chen L. W. (2004) Differential expression of NMDA and AMPA receptor subunits in DARPP-32-containing neurons of the cerebral cortex, hippocampus and neostriatum of rats. Brain Res. 998, 174–183.

    Article  PubMed  CAS  Google Scholar 

  77. Ariano M. A., Larson E. R., Noblett K. L., Sibley D. R., and Levine M. S. (1997) Coexpression of striatal dopamine receptor subtypes and excitatory amino acid subunits. Synapse 26, 400–414.

    Article  PubMed  CAS  Google Scholar 

  78. Neve K. A., Seamans J. K., and Trantham-Davidson H. (2004) Dopamine receptor signaling. J. Recept. Signal. Transduct. Res. 24, 165–205.

    Article  PubMed  CAS  Google Scholar 

  79. Salter M. W. (2003) D1 and NMDA receptors hook up: expanding on an emerging theme. Trends Neurosci. 26, 235–237.

    Article  PubMed  CAS  Google Scholar 

  80. Price C. J., Kim P., and Raymond L. A. (1999) D1 dopamine receptor-induced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors. J. Neurochem. 73, 2441–2446.

    Article  PubMed  CAS  Google Scholar 

  81. Snyder G. L., Allen P. B., Fienberg A. A., et al. (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J. Neurosci. 20, 4480–4488.

    PubMed  CAS  Google Scholar 

  82. Chao S. Z., Lu W., Lee H. K., Huganir R. L., and Wolf M. E. (2002) D(1) dopamine receptor stimulation increases GluR1 phosphorylation in postnatal nucleus accumbens cultures. J. Neurochem. 81, 984–992.

    Article  PubMed  CAS  Google Scholar 

  83. Swayze R. D., Lise M. F., Levinson J. N., Phillips A., and El-Husseini A. (2004) Modulation of dopamine mediated phosphorylation of AMPA receptors by PSD-95 and AKAP79/150. Neuropharmacology 47, 764–778.

    Article  PubMed  CAS  Google Scholar 

  84. Yan Z., Hsieh-Wilson L., Feng J., et al. (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat. Neurosci. 2, 13–17.

    Article  PubMed  CAS  Google Scholar 

  85. Feng J., Yan Z., Ferreira A., et al. (2000) Spinophilin regulates the formation and function of dendritic spines. Proc. Natl. Acad. Sci. USA 97, 9287–9292.

    Article  PubMed  CAS  Google Scholar 

  86. Mangiavacchi S. and Wolf M. E. (2004) D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J. Neurochem. 88, 1261–1271.

    Article  PubMed  CAS  Google Scholar 

  87. Levenes C., Daniel H., and Crepel F. (1998) Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited. Prog. Neurobiol. 55, 79–91.

    Article  PubMed  CAS  Google Scholar 

  88. Ito M. (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol. Rev. 81, 1143–1195.

    PubMed  CAS  Google Scholar 

  89. Crepel F. and Krupa M. (1998) Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. Brain Res. 458, 397–410.

    Article  Google Scholar 

  90. Ito M. and Karachot L. (1992) Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells. Neurosci. Res. 14, 27–38.

    Article  PubMed  CAS  Google Scholar 

  91. Zhao H. M., Wenthold W., and Petralia R. S. (1998) Glutamate receptor targeting to synaptic population on Purkinje cells is developmentally regulated. J. Neurosci. 18, 5517–5528.

    PubMed  CAS  Google Scholar 

  92. Matsuda S., Launey T., Mikawa S., and Hirai H. (2000) Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Prukinje neurons. EMBO J. 19, 2765–2774.

    Article  PubMed  CAS  Google Scholar 

  93. Takagi Y., Takagi N., Besshoh S., Miyake-Takagi K., and Takeo S. (2003) Transient global ischemia enhances phosphorylation of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor in the hippocampal CA1 region in rats. Neurosci. Lett. 341, 33–36.

    Article  PubMed  CAS  Google Scholar 

  94. Fu X. Z., Zhang Q. G., Meng F. J., and Zhang G. Y. (2004) NMDA receptor-mediated immediate Ser831 phosphorylation of GluR1 through CaMKIIalpha in rat hippocampus during early global ischemia. Neurosci. Res. 48, 85–91.

    Article  PubMed  CAS  Google Scholar 

  95. Fang L., Wu J., Lin Q., and Willis W. D. (2003) Protein kinases regulate the phosphorylation of the GluR1 subunit of AMPA receptors of spinal cord in rats following noxious stimulation. Mol. Brain Res. 118, 160–165.

    Article  PubMed  CAS  Google Scholar 

  96. Fang L., Wu J., Zhang X., Lin Q., and Willis W. D. (2003) Increased phosphorylation of the GluR1 subunit of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor in rats following intradermal injection of capsaicin. Neuroscience 122, 237–245.

    Article  PubMed  CAS  Google Scholar 

  97. Guan Y., Guo W., Robbins M. T., Dubner R., and Ren K. (2004) Changes in AMPA receptor phosphorylation in the rostral ventromedial medulla after inflammatory hyperalgesia in rats. Neurosci. Lett. 366, 201–205.

    Article  PubMed  CAS  Google Scholar 

  98. Vanhoose A. M. and Winder D. G. (2003) NMDA and beta1-adrenergic receptors differentially signal phosphorylation of glutamate receptor type 1 in area CA1 of hippocampus. J. Neurosci. 23, 5827–5834.

    PubMed  CAS  Google Scholar 

  99. Harris S. L., Gallyas F. Jr., and Molnar E. (2004) Activation of metabotropic glutamate receptors does not alter the phosphorylation state of GluR1 AMPA receptor subunit at serine 845 in perirhinal cortical neurons. Neurosci. Lett. 372, 132–136.

    Article  PubMed  CAS  Google Scholar 

  100. Mangiavacchi S. and Wolf M. E. (2004) Stimulation of N-methyl-D-aspartate receptors, AMPA receptors or metabotropic glutamate receptors leads to rapid internalization of AMPA receptors in cultured nucleus accumbens neurons. Eur. J. Neurosci. 20, 649–657.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Q. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.Q., Arora, A., Yang, L. et al. Phosphorylation of AMPA receptors. Mol Neurobiol 32, 237–249 (2005). https://doi.org/10.1385/MN:32:3:237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:32:3:237

Index Entries

Navigation