Skip to main content
Log in

Defects of immune regulation in the presenilin-1 mutant knockin mouse

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Mutations in the presenilin-1 (PS1) gene are causally linked to early-onset Alzheimer’s disease (AD). Studies of neurons suggest that PS1 mutations result in a gain-of-function, which perturbs calcium regulation and increases cell vulnerability to apoptosis. Alterations in immune cell function have also been demonstrated in AD, and a role for PS1 in immune regulation has been suggested recently. We now report that splenocytes from PS1-mutant (M146V) knockin mice exhibit increased caspase activity, abnormal calcium regulation and aberrant mitochondrial function. Isolated splenic T cells from PS1-mutant mice respond poorly to proliferative signals and have downregulated cluster designation 3 and interleukin (IL)-2-receptor expression necessary for a normal T-cell immune response. Thus, adverse effects of a mutation that causes AD on immune function that involves perturbed calcium regulation and cytokine signaling in lymphocytes, and associated sensitivity of lymphocytes to apoptosis are demonstrated. These findings suggest that abnormalities in immune function might play major roles in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo D. M. and Lapchak P. A. (1994) Induction of immune system mediators in the hippocampal formation in Alzheimer’s and Parkinson’s diseases: selective effects on specific interleukins and interleukin receptors. Neurosci. 61, 745–754.

    Article  CAS  Google Scholar 

  • Baki L., Marambaud P., Ethimiopoulos S., et al. (2001) Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex. Proc. Natl. Acad. Sci. USA 98, 2381–2386.

    Article  PubMed  CAS  Google Scholar 

  • Begley J. G., Duan W., Chan S., Duff K., and Mattson M. P. (1999) Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. J. Neurochem. 72, 1030–1039.

    Article  PubMed  CAS  Google Scholar 

  • Berridge M. J., Lipp P., and Bootman M. D. (2000) The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Brunkan A. L. and Goate A. M. (2005) Presenilin function and gamma-secretase activity. J. Neurochem. 93, 769–792.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum J. D., Choi E. K., Luo Y., et al. (1998) Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of presenilin fragment. Nat. Med. 4, 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. L., Mayne M., Holden C. P., Geiger J. D., and Mattson M. P. (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J. Biol. Chem. 275, 18,195–18,200.

    CAS  Google Scholar 

  • Chan S. L., Griffin W. S., and Mattson M. P. (1999) Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer’s disease. J. Neurosci. Res. 57, 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Curtin J. F., Donovan M., and Cotter T. G. (2002) Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods 265, 49–72.

    Article  PubMed  CAS  Google Scholar 

  • DeStrooper B., Saftig P., Crassaerts K., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 291, 387–390.

    Article  CAS  Google Scholar 

  • Duan W., Zhang Z., Gash D. M., and Mattson M. P. (1999) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann. Neurol. 46, 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., Eckman C., Zehr C., et al. (1996) Increased amyloid-beta 42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  • Eckert A., Cotman C. W., Zerfass R., Hennerici M., and Muller W. E. (1998) Lymphocytes as cell model to study apoptosis in Alzheimer’s disease: vulnerability to programmed cell death appears to be altered. J. Neural Transm. Suppl. 54, 259–267.

    PubMed  CAS  Google Scholar 

  • Eckert A., Schindowski K., Leutner S., et al. (2001) Alzheimer’s disease-like alterations in peripheral cells from presenilin-1 transgenic mice. Neurobiol. Dis. 8, 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Fraser P. E., Yu G., Levesque L., et al. (2001) Presenilin function: connections to Alzheimer’s disease and signal transduction. Biochem. Soc. Symp. 67, 89–100.

    PubMed  CAS  Google Scholar 

  • Grossmann A., Kukull W. A., Jinneman J. C., et al. (1993) Intracellular calcium response is reduced in CD4+ lymphocytes in Alzheimer’s disease and in older persons with Down’s syndrome. Neurobiol. Aging 14, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Fu W., Sopher B. L. et al. (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Medicine 5, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Fu W., Xie J., et al. (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nature Med. 4, 957.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., et al. (1999) Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid betapeptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem. 72, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J. (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154.

    Article  PubMed  CAS  Google Scholar 

  • Jehn B. M., Bielke W., Pear W. S., and Osborne B. A. (1999) Cutting edge: protective effects of Notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635.

    PubMed  CAS  Google Scholar 

  • Leissring M. A., LaFerla F. M., Callamaras N., and Parker I. (2001) Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. Neurobiol. Dis. 8, 469–478.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi V. R., Garcia M., Rey L., and Cacabelos R. (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s disease (AD) individuals. J. Neuroimmunol. 97, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Maillard I., Adler S. H., and Pear W. S. (2003) Notch and the immune system. Immunity 19, 781–791.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Chan S. C. (2003) Nat. Cell Biol. 5, 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Zhang Y., and Bose S. (1993) Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp. Neurol. 121, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Lovell M. A., Furukawa K., and Markesbery W. R. (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65, 1740–1751.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Goodman Y., Lou H., Fu W., and Furukawa K. (1997) Activation of NF-Kappa β protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49, 681–691.

    Article  PubMed  CAS  Google Scholar 

  • Morgan G., Smith S., Pak J., Marshak-Rothstein A., Fissore R., and Osborne B. A. (1999) Characterization of a mutant T-cell hybridoma line with defects in the TCR-mediated apoptotic pathway. Cell Death Diff. 6, 36–47.

    Article  CAS  Google Scholar 

  • Newmeyer D. D. and Ferguson-Miller S. (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 480–490.

    Google Scholar 

  • Pereira C., Agostinho P., Moreira P. L., Cardoso S. M., and Oliveira C. R. (2005) Alzheimer’s disease-associated neurotoxic mechanisms and neuroprotective strategies. Curr. Drug Targets CNS Neurol. Disord. 4(4), 383–403.

    Article  PubMed  CAS  Google Scholar 

  • Popovic M., Caballero-Bleda M., Puelles L., and Popovic N. (1998) Importance of immunological and inflammatory processes in the pathogenesis and therapy of Alzheimer’s disease. Int. J. Neurosci. 95, 203–236.

    Article  PubMed  CAS  Google Scholar 

  • Qyang Y., Chambers S. M., Wang P., et al. (2004) Myeloproliferative disease in mice with reduced presenilin gene dosage: effect of gamma-secretase blockage. Biochemistry 43, 5352–5359.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2002) Alzheimer’s disease: genes, proteins, and therapy, Physiol. Rev. 81, 741–766.

    Google Scholar 

  • Shalit K., Sredni B., Brodie C., Kott E., and Huberman M. (1995) T lymphocytes subpopulations and activation markers correlate with severity of Alzheimer’s disease. Clin. Immunol. Immunopathol. 75, 246–250.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R., Rogaev E. I., Liang Y., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760.

    Article  PubMed  CAS  Google Scholar 

  • Stieler J. T., Lederer C., Bruckner M. K., Wolf H., Holzer M., and Gertz H. J. (2001) Impairment of mitogenic activation of peripheral blood lymphocytes in Alzheimer’s disease. Neuroreport 12(18), 3969–3972.

    Article  PubMed  CAS  Google Scholar 

  • Sulger J., Dumais-Huber C., Zerfass R., Henn F. A., and Aldenhoff J. B. (1999) The calcium response of human T lymphocytes is decreased in aging but increased in Alzheimer’s dementia. Biol. Psychiatr. 45, 737–742.

    Article  CAS  Google Scholar 

  • Tanzi R. E., Kovacs D. M., Kim T. W., Moir R. D., Guenette S. Y., and Wasco W. (1996) The gene defects responsible for familial Alzheimer’s disease. Neurobiol. Dis. 3, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Tournoy J., Bossuyt X., Snellinx A., et al. (2004) Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Hum. Mol. Genet. 13, 1321–1331.

    Article  PubMed  CAS  Google Scholar 

  • Weidemann A., Eggert S., Reinhard F. B., et al. (2002) A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41, 2825–2835.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Osborne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, G.A., Guo, Q., Chan, S.L. et al. Defects of immune regulation in the presenilin-1 mutant knockin mouse. Neuromol Med 9, 35–45 (2007). https://doi.org/10.1385/NMM:9:1:35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:9:1:35

Index Entries

Navigation