DOI QR코드

DOI QR Code

Variation of Green Space Cooling Effect Influenced by Its Composition and Surroundings in Suwon City

수원시 녹지 조성 및 주변 환경에 따른 녹지 냉각 효과의 변화

  • Seung Yeon Lee (Environmental Assessment Group, Korea Environment Institute) ;
  • Seong Woo Jeon (Environmental Science & Ecological Engineering, Korea University)
  • 이승연 (한국환경연구원 환경평가본부) ;
  • 전성우 (고려대학교 환경생태공학과)
  • Received : 2023.06.21
  • Accepted : 2023.06.27
  • Published : 2023.06.30

Abstract

Urban Heat Island (UHI) is caused by an energy imbalance in urban areas, where building design and land cover contribute to its amplification. To mitigate UHI, increasing green space is one of the well known and the most effective approach. This study aims aimed to identify specific components of green spaces that lower temperatures and demonstrate the cooling effects based on their size and composition. Forests within green spaces have had a greater impact on temperature reduction due to shading and blocking solar radiation. Although lakes also contributed to temperature reduction, the effect to cooling intensity was not significant. The cooling distance does not depended on green space size or composition. The study emphasizes that initial temperature has a strongerinfluence on cooling intensity than green space size, highlighting the importance of vegetation type within green spaces to achieve a cooling effect. These findings provide valuable insights for urban planning and the design of green spaces to mitigate the effects of the urban heat island.

도시열섬(Urban Heat Island; UHI)은 도시가 인근 지역에 비해 뜨거운 현상을 의미하며 도시 내부의 건물의 구성, 토지피복의 종류 등이 변화하기 때문에 발생한다. 도시열섬을 완화하기 위한 방법으로 녹지공간의 조성인데, 녹지가 제공하는 냉각효과의 경우 녹지의 내부 구성 요소 및 녹지의 크기에 따라 변화한다. 본 연구는 다양한 토지피복으로 구성된 수원시를 대상으로 녹지의 크기와 녹지를 구성하는 요소들에 따른 냉각효과의 차이를 확인하고, 녹지의 인근 토지피복에 따라 녹지로부터 제공되는 냉각효과의 차이를 고찰하고자 한다. 연구 결과, 녹지의 초기 온도는 산림의 비율이 높을수록, 그리고 호수가 존재할수록 낮아졌다. 냉각효과 중 하나인 냉각강도는 숲의 비율이 높을수록 강해졌지만, 초기 온도가 더 큰 영향을 미쳤다. 다만 냉각 거리는 녹지의 크기나 구성에 따라 달라지지 않음을 확인했다. 본 연구의 결과는 도시의 계획 시 열섬을 완화하기 위한 녹지 설계 방안을 제시한 다는 점에 의의를 가진다.

Keywords

Acknowledgement

This work was supported by Korea Environment Industry &Technology Institute (KEITI) through "Climate Change R&D Project for New Climate Regime.", funded by Korea Ministry of Environment (MOE) (2022003570003). We thank to Who-Seung Lee, No Ol Lim, Hyo-jin Cho, Ji-yeon Lee ,Yoojin Shin who gave advice and useful comments to improve the manuscript.

References

  1. Ackley JW, Angilletta MJ, DeNardo D, Sullivan B, Wu J. 2015. Urban heat island mitigation strategies and lizard thermal ecology: landscaping can quadruple potential activity time in an arid city. Urban Ecosystems 18: 1447-1459. https://doi.org/10.1007/s11252-015-0460-x
  2. Aflaki A, Mirnezhad M, Ghaffarianhoseini A, Ghaffarianhoseini A, Omrany H, Wang ZH and Akbari H. 2017. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 62: 131-145. https://doi.org/10.1016/j.cities.2016.09.003
  3. Alexandri E, Jones P. 2008. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment 43(4): 480-493. https://doi.org/10.1016/j.buildenv.2006.10.055
  4. Armson D, Stringer P, Ennos AR. 2012. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening 11(3): 245-255. https://doi.org/10.1016/j.ufug.2012.05.002
  5. Bakarman MA, Chang JD. 2015. The influence of height/width ratio on urban heat island in hot-arid climates. Procedia Engineering 118: 101-108. https://doi.org/10.1016/j.proeng.2015.08.408
  6. Chang CR, Li MH, Chang SD. 2007. A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning 80(4): 386-395. https://doi.org/10.1016/j.landurbplan.2006.09.005
  7. Cheng X, Wei B, Chen G, Li, Song C. 2015. Influence of park size and its surrounding urban landscape patterns on the park cooling effect. Journal of Urban Planning and Development 141(3): A4014002.
  8. Choi JW. 2010. Comparisons of Classification System of Biotope Type in Major Korean Cities. Korean Journal of Environment and Ecology 24(1): 78-86.
  9. Edmondson JL, Stott I, Davies ZG, Gaston KJ, Leake JR. 2016. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Scientific Reports 6(1): 1-8. https://doi.org/10.1038/s41598-016-0001-8
  10. Gao Z, Zaitchik BF, Hou Y, Chen W. 2022. Toward park design optimization to mitigate the urban heat Island: Assessment of the cooling effect in five US cities. Sustainable Cities and Society 81: 103870.
  11. Gill SE, Handley JF, Ennos AR, Pauleit S. 2007. Adapting cities for climate change: the role of the green infrastructure. Built Environment 33(1): 115-133. https://doi.org/10.2148/benv.33.1.115
  12. Gioia A, Paolini L, Malizia A, Oltra-Carrio R, Sobrino JA. 2014. Size matters: vegetation patch size and surface temperature relationship in foothills cities of northwestern Argentina. Urban Ecosystems 17: 1161-1174. https://doi.org/10.1007/s11252-014-0372-1
  13. Huang H, Deng X, Yang H, Li S. 2020. Spatial evolution of the effects of urban heat island on residents' health. Tehnicki vjesnik 27(5): 1427-1435. https://doi.org/10.17559/TV-20200503211912
  14. Jaganmohan M, Knapp S, Buchmann CM, Schwarz N. 2016. The bigger, the better? The influence of urban green space design on cooling effects for residential areas. Journal of Environmental Quality 45: 134-145.
  15. Jee JB, Kim BY, Zo IlS, Lee KT, Choi YJ. 2016. Retrieval of Land Surface Temperature based on High Resolution Landsat 8 Satellite Data. The Korean Society of Remote Sensing 32(2): 171-183. [Korean Literature] https://doi.org/10.7780/kjrs.2016.32.2.9
  16. Kim EY. 2017. An Analysis of Heat Wave Vulnerability and Establishment a Strategy in Suwon. Suwon Research Institute. [Korean Literature]
  17. Kim EY. 2018. A Vision and Strategies of Urban Parks and Green Spaces for Suwon 2030. Suwon Research Institute. [Korean Literature]
  18. Kim HH. 1992. Urban heat island. International Journal of Remote Sensing 13(12): 2319-2336. https://doi.org/10.1080/01431169208904271
  19. Lee KI, Lee SJ, Tuvshinjargal N, Lee ES, Lee GG, Jeon SW. 2020. Study on Heat Vulnerability Assessment Using Biotope Map - A Case Study of Suwon, Korea -. Journal of Climate 11(6-1): 629-641. [Korean Literature] https://doi.org/10.15531/KSCCR.2020.11.6.629
  20. Lin P, Lau SSY, Qin H, Gou Z. 2017. Effects of urban planning indicators on urban heat island: a case study of pocket parks in highrise high-density environment. Landscape and Urban Planning 168: 48-60. https://doi.org/10.1016/j.landurbplan.2017.09.024
  21. Melaas EK, Wang JA, Miller DL, Friedl MA. 2016. Interactions between urban vegetation and surface urban heat islands: a case study in the Boston metropolitan region. Environmental Research Letters 11(5): 054020.
  22. Montavez JP, Rodriguez A, Jimenez JI. 2000. A study of the urban heat island of Granada. International Journal of Climatology: A Journal of the Royal Meteorological Society 20(8): 899-911. https://doi.org/10.1002/1097-0088(20000630)20:8<899::AID-JOC433>3.0.CO;2-I
  23. Niu L, Zhang Z, Peng Z, Liang Y, Liu M, Jiang Y, Tang R. 2021. Identifying surface urban heat island drivers and their spatial heterogeneity in China's 281 cities: An empirical study based on multiscale geographically weighted regression. Remote Sensing 13(21): 4428.
  24. Peng J, Liu Q, Xu Z, Lyu D, Du Y, Qiao R, Wu J. 2020. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landscape and Urban Planning 202: 103873.
  25. Priyadarsini R, Hien WN, David CKW. 2008. Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island. Solar Energy 82(8): 727-745. https://doi.org/10.1016/j.solener.2008.02.008
  26. Steeneveld GJ, Koopmans S, Heusinkveld BG, Theeuwes NE. 2014. Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landscape and Urban Planning 121: 92-96. https://doi.org/10.1016/j.landurbplan.2013.09.001
  27. Taha H. 1997. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings 25(2): 99-103. https://doi.org/10.1016/S0378-7788(96)00999-1
  28. Upmanis H, Eliasson I, Lindqvist S. 1998. The influence of green areas on nocturnal temperatures in a high latitude city (Goteborg, Sweden). International Journal of Climatology: A Journal of the Royal Meteorological Society 18(6): 681-700. https://doi.org/10.1002/(SICI)1097-0088(199805)18:6<681::AID-JOC289>3.0.CO;2-L
  29. Watkins R, Palmer J, Kolokotroni M. 2007. Increased temperature and intensification of the urban heat island: Implications for human comfort and urban design. Built Environment 33(1): 85-96. https://doi.org/10.2148/benv.33.1.85
  30. Yang C, Zhan Q, Gao S, Liu H. 2019. How do the multi-temporal centroid trajectories of urban heat island correspond to impervious surface changes: a case study in Wuhan, China. International Journal of Environmental Research and Public Health 16(20): 3865.