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Abstract 

In this paper, we consider the dynamical model of a class of underactuated systems. By 

combination of the partial fedback linearization and Yamada’s global linearization, we 

deduced a global approximate linearization method for underactuated systems. By using 

this method, the dynamical equations can be transformed into an state eqution that is 

expressed as a pseudolinear term with Brunovsky canonical form plus a high order 

nonlinear term, where the nonlinear term is high order on the equilibrium manifold of the 

system. By standard nonlinear feedback method, the system is transformed into the sum of 

a stable linear term and a high order nonlinear term. Take proper feedforward value as 

the input to reduce the influence of the nonlinear term to the system and thus the 

underactuated system can be regulated. This method is applied to the ball and beam 

system and simulation results show that the proposed approximate linearization method is 

effective for setpoint control. 

 

Keywords: underactuated systems, approximate linearization, nonlinear control, 

setpoint control, ball and beam system 

 

1. Introduction 

The underactuated system is a class of nonlinear system with fewer control inputs than 

the degrees of freedoms and the control problems are more complex Because of the 

missing of the input torgue on the underactuated joint. The coupling relationship between 

degrees of freedom is considered to achieve the control objectives. Many typical 

underacutated mechanical systems, such as inverted pendulum, Furuta pendulum, 

Pendubot, Acrobot, have been built up. A good many control methods have been 

investigated for the control problems of the underactuated models, such as linearization 

method, sliding mode variable structure control method, based on passive control methods, 

intelligent control method. In this paper, we study a linearization method about the 

underactuated system. 

For normal nonlinear system, we can control it with control the linear system if we can 

transform the nonlinear system to the linear system by nonlinear feedback and coordinate 

transformations. But such accurate feedback linearization method can not apply to the 

underactuated system, it means we cannot transform the underactuated system to linear 

system exactly. So the underactuated system cannot be analyzed with linear control theory 

and need to be controled with Approximate Linearization or nonlinear control 

method .There were plenty of other linear methods about linearization for nonlinear 

systems in addition to accurate feedback linearization. Such as Jacobian linear method 

[1] ，which is effective for the partial stabilization of systems but cannot work well for 

the larger state transition. Spong proposed a method which linearized part coordinate 

variables of the underactuated system and transformed the system to affine nonlinear 

system. But the system still was a nonlinear system and need further analysis to design its 

controller [2]. Yamada proposed a global linear method to the nonlinear systems which 
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used nonlinear feedback control the system [3].But many conditions proposed in such 

method were not always right to the actual systems. And there are many other methods 

such as pseudo-linear method [4-7], approximate feedback linearization [8], extended 

linearization [9]. But all of them were proposed for partial stabilization of equilibrium 

points and cannot realize the globe stabilization of system [10-15]. In this paper, a kind of 

global approximate linearization method which apply to under actuated system will be 

proposed by combination of the partial feedback linearization and Yamada’s global 

linearization and apply it to the set point control problems of ball and beam system. 

 

2. Global Approximate Linearization Model 
 

2.1. Partial Feedback Linearization 

Consider the underactuated system with two joint, without loss of generality, assume 

the first joint has no motivation, the dynamic equation can be expressed as  





























































1

0

)(

)(

),(),(

),(),(

)()(

)()(

2

1

2

1

2221

1211

2

1

2221

1211

qG

qG

q

q

qqCqqC

qqCqqC

q

q

qMqM

qMqM












           (1) 

Denote the state variables 
 

T

qqqqx
2121

,,, 
, then the dynamic equation can be 

represented as 


































































































21122211

11

21122211

12

21122211

211121422111221321111121

21122211

122212412222212311222112

0

0

)()(

)()(

4

3

4

3

2

1

MMMM

M

MMMM

M

MMMM

GMGMxCMCMxCMCM

MMMM

GMGMxCMCMxCMCM

x

x

x

x

x

x









            (2) 

Denote 0x , then the equilibrium point of the system satisfies 0)(
1

qG . All 

Controllable equilibrium points of the system constitute a one-dimensional manifold 

called equilibrium manifold [4]. In order to apply it to the ball and beam system in the 

next section, It may be assumed that the system satisfy the partial strong inertia coupling, 

that is 0
12

M , using the partial feedback linearization method without been Configured 
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then the equation (2)can be represented as  
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2.2. Global Approximate Linearization 

So we are going to deduce the global approximate linearization of the system (4) using 

the Yamada’s theory. For the )(
1

qG , we can denote  
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In accordance with the Linearization method of the paper [5]，we can denote 
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Substitute )( xA  and )( xb  into (6) and (7) to obtain 
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Assume )( xT  meet the regularity condition，that is to say: 
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 xT         (9) 

We introduce the coordinate transformation xxTz )(
1

 ，then the state equation of 

the system (5) can be represented as: 
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The dynamical equations can be transformed into an state eqution that is expressed as a 

pseudolinear term with Brunovsky canonical form plus a high order nonlinear term. In the 

paper [4], Murray Gives the decomposition form of input-output linearization of general 

nonlinear system 
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and point out that if )( x
i

  and )( x
i

  is advanced on the equilibrium manifold, then 

the control law designed by the linear approximation system for trajectory tracking of 

near equilibrium manifold is stable and bounded.Specially, if denote the output of the 

sysytem
1

zy   in (10), then if the nonlinear term zxTxT )()(
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  is high order on the 

equilibrium manifold of the system, the control law designed by the pseudo linear part for 

the setpoint control on the equilibrium manifold is stable, and the system can achieve the 

stabilization on the equilibrium manifold by making the pseudo linear partial stability. 

According to (8) and (10), using Yamada’s linearization after partial feedback 

linearization, we can get the result more simple than the paper[5] about the underactuated 

systems, reduce the computational complexity in the process of linearization, and make 

them easier to analyze the results of linearization. 
 

2.3. Feedback Control Law 
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the change of system state with the integrator of different locations, so it is difficult to 

find the suitable input v to eliminate the influence of all nonlinear terms to the system, 

and can only set ),(
4

zxnv   to eliminate the effect of the nonlinear term ,but for the 

effect to the other nonlinear term, we can verify the effectiveness of the control law with 

the result of the control. 

 

 

Figure 1. Control Structure of the Underactuated System 

So with the Global approximate linearization,the control structure of the c can be 

represented as Figure 1(b),where the control law is 
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The control procedure of the system can be expressed as: Firstly, we can get the system 

state x with the differential of the output q of the system, and acorrding to (8) we can get 

the state transformation matrix )( xT , then solve the auxiliary status z  of the system. 

Nextly we can solve the variable u  of the feedback control with (13) and the input 

torque  of the dynamical system with (3), so we can achieve the control of the 

underactuated mechanical systems. In the process of the control ,we require the state 

transformation matrix )( xT  to be regular expression, that is satisfied with (9). 

 

3. Application of Global Linearization to the Ball and Beam System 
 

3.1. The Setpoint Control of the Ball and Beam System 

The ball and beam system is a typical nonlinear system [3]. It consists of a rail turning 

around the fixed hanging point and a ball rolling along the rail, as it is shown in Figure 2. 

Some scholars have researched the setpoint control and the tracking control of the ball in 

the system. But most of the research work is onsidered the rolling joint without driver and 

the rotary joint with driver. They rarely research on the underactuated rotary joint and the 

rolling joint with driver. Discussion of this article is the latter case. 

 

 

Figure 2. Simplified Model of the B-B System 

Assume that the ball is sliding on the rails, then we can get the dynamical equation of 

the system shown in Figure 2 with Lagrange method: 
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The equilibrium point 
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dimensional equilibrium manifold[4]. If the system can be stable，it will be converging 
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approximate linearization[4]. 
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So the equilibrium manifold of the system is a ARC-tangent curve, as is shown on 

Figure 3, the final stable point of the system is one point on the curve. 
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3.2. The Application of Global Approximate Linearization 

According to (3), the state equation of the system becomes to the form of Affine 
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For any x  of the universe of discourse，the above equation is not always right, and it 

is difficult to find the method avoiding the singular of )( xT  with theoretical analysis, but 

we can verify that the above equation on equilibrium manifold with constant non-zero. 

Simulation results show, if the initial state is close to equilibrium manifold, the regularity 

condition of )( xT can be guaranteed. 
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Figure 3. Equilibrium Manifold of B-B System 
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Where 
41

~  is Hurwitz’s constant coefficient, 

 
dd

T

ddddd
xxTzzzzz )(

1

4321


  is the 

expectation state of the system in new state space. 

We can verify that ),( zxn  and its first derivative on equilibrium manifold is zero, that 

said , ),( zxn is high order on equilibrium manifold, it means that the global approximate 

linearization method is effective for local stabilization on equilibrium manifold in the ball 

and beam system. 

 

3.3. Simulation and Analysis 

Simulations are given for the position control of the ball and beam system with the 

above control law. Parameters of the ball and beam system is as shown in Tab.1.And 

Hurwitz’s coefficients are: 16
0
 , 32

1
 ， 24

2
 ， 8

3
 。 

Table 1. Parameters of the ball and beam system 

m1 m2 l I1 I2 g 

4.8 kg 2.5 kg 
0.5 

m 

1.667 

gm2 
0 9.8 m/s2 

 

Experiment 1: The control about from one balance setpoint to another on equilibrium 

manifold to verify the validity of the controller for fixed-point control. Assuming that the 

initial state of the system is  0
0 0 0 0

T

x  , and the expectation state is 

 
T

d
x 008.05.0 . The situation of change of joint variables is expressed in Figure 

4(a), the required joint input   is expressed in Figure 4(b), the numerical change of 

nonlinear components is expressed in Figure 4(c), the relations between the two joints of 

variables and equilibrium manifold is expressed in Figure 4(d). From Figure 4, we can 

discover the joints can convergence to the expectation equilibrium point with a smooth 

input torque in short time, and there is no larger overshoot and show the similar 

characteristics to the overdamp linear system. It is because in this case, the values of 

nonlinear component are minor, and they are the high order smalls of the pseudo –linear 

items. And the lead section of the system is the pseudo-linear section of the overdamp 

system by pole placement. At the same time, because the nonlinear term is high order on 

equilibrium manifold and the pseudo –linear section could control the system to move 

along the equilibrium manifold, the system will move near the equilibrium manifold, so it 

shows the good linearity. The whole control process can be divided into the following 

four stages: At the beginning, it needs exert a positive smaller force to corrupt the 

equilibrium state of the system, and the system deviates from the equilibrium manifold 

gradually; Secondly, impose a smaller force in positive and negative directions to the 

system, suppress the deviation of the system state, pull the system back near the 
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equilibrium manifold; Nextly, impose a increase force gradually, make the state of the 

system move along the equilibrium manifold; Finally, decrease the increasing slope of the 

force gradually, suppress the increase of the joint speed, ultimately achieve a constant 

force, make the system stability at the specified equilibrium point. 

Experiment 2: From non-equilibrium point outside of equilibrium manifold to a 

specific balance of control.This experiment is mainly test the anti-sway stability of the 

controller to the system. Assuming that the initial state of the system is 

 
T

x 3.02.01.005.0
0

 , and the expectation state is  
T

d
x 0000 . The response 

curve of joint variables is expressed in Figure 5(a). The relationship between Two-joint 

variable and balancing manifolds is expressed in Figure 5(b). Since the initial state of the 

system is not an equilibrium, and further away from equilibrium manifold, that is, at the 

time of the initial state of the system with redundancy "energy", So it needs to move the 

system to a point with "energy" near equilibrium manifold, then use the control 

programme about balance to balance to move it to specify balance point. In the response 

curve of joint variable, there is a big overshoot due to "redundancy". In the control 

process, nonlinear high-order small quantity can no longer be ignored, sometimes equal to 

the value of pseudo linear. So the controller designed in this paper is effective to the case 

which the initial state is near equilibrium manifold and control effect on equilibrium 

manifold of the more far away the worse, could not even calm. 

Experiment 3: Trajectory tracking experiment. While we discussed the set-point 

control of the system, but the controller is also effective to a certain extent for trajectory 

tracking. Assuming that the initial state of the system is  
T

x 001.00
0
 , the 

expected path of the system is given by moving joints, path equation is 

1.0)
5

sin(2.0)(
2

 ttq
d

 . Since control objective is not eventually reach an equilibrium 

point, but tracking a trail, so the expectations path of the rotary joint cannot be obtained in 

accordance with equilibrium manifold, but should be calculated by type (14), as the 

dashes shown in Figure 6(a). The trajectory tracking response curve of two joint is 

expressed in Figure 6(a) and Figure 6(b), the tracking error of two joint is expressed in 

Figure 6(c) and Figure 6(d). Thus, the controller for the trajectory tracking has some 

effect, but there is still more obvious dynamic errors. This is because the track is no 

longer the problems on the balanced manifold, but it needs to consider the dynamics of 

the system. And in linearization method, the nonlinear terms reflected the dynamic 

characteristics is considered as high-order small quantities, so the approximate 

linearization method has some limitations on the trajectory tracking control.  
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Figure 4. Simulation Results of Set-Point Control Problem 
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Figure 6. Simulation Results of Trajectory Tracking Problem 

4. Discussion and Conclusion 

In this paper, we studied the dynamical model of a class of underactuated systems. By 

combination of the partial feedback linearization and Yamada’s approximate linearization 

method for underactuated systems. By using this method, the dynamical global 

linearization, we deduced a global equations can be transformed into an state eqution that 

is expressed as a pseudolinear term with Brunovsky canonical form plus a high order 

nonlinear term, where the nonlinear term is high order on the equilibrium manifold of the 

system. By standard nonlinear feedback method, the system is transformed into the sum 

of a stable linear term and a high order nonlinear term. Take proper feedforward value as 

the input to reduce the influence of the nonlinear term to the system and thus the 

underactuated system can be regulated. This method is applied to the ball and beam 

system and simulation results show that the proposed approximate linearization method is 

effective for setpoint  
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