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Abstract 

Optimal sensor placement (OSP) techniques are of vital importance for the monitoring of 

large-scale structures or complex mechanical systems. In order to overcome the defects of 
slow convergence speed and easily falling into local optimum in monkey algorithm (MA), a 

new MA, called chaotic monkey algorithm (CMA), is proposed by introducing chaos search 

strategy to implement the OSP. In this algorithm, the initial monkeys are generated by using 
chaos variable and binary coding to enhance the global search capability, and a greedy 

strategy is adopted to improve the efficiency of local search. Numerical experiments are 
conducted on the sensor placement of a suspension bridge. The results verify that the new 

CMA can solve the OSP problem well and has better search capability than MA. 
 

Keywords: optimal sensor placement; monkey algorithm; chaos; modal assurance 

criterion 

 

1. Introduction 

Due to an increasing number of complex mechanical systems or large structures 

for operating state monitoring or structural health monitoring, optimal sensor 

placement (OSP) in mechanical systems or structures has become a popular and 

common issue in the last decade. However, the performance of dynamic 

characteristics of these systems and structures depends heavily on the quantity and 

quality of the measured data, which in turn relies on the number of sensors and 

locations placed. Because of economic reasons, high cost of data acquisition 

systems and other reasons, the sensors installed in these structures or systems are 

always sparse, in fact, far less than available positions. The OSP techniques can 

reduce the chance of measuring and processing a large volume of redundant sensor 

data. Consequently, how to optimally place limited number of sensors for better 

structural identification and feature extraction is a challenging task [1-3]. 

A great deal of research has been conducted over the last  decade on optimal 

sensor placement using a variety of placement techniques and criteria. It is not easy 

to classify all the OSP techniques without missing. Here, we categorize OSP 

techniques into two classifications — traditional techniques and non-traditional ones. 

As for the traditional techniques, Kammer [4] developed the effective 

independence (EFI) method, which maximizes a combination of target mode signal 

strength and linear independence. EFI method classifies sensor locations based on 

the quantified information by observing target modes, and eliminates less significant 

locations from the candidates. Meo and Zumpano modified the EFI method, and 

proposed the effective independence driving-point residue (EFI-DPR) method for 

OSP to identify the vibration characteristics of a bridge [5]. Heo et al. proposed the 

modal kinetic energy (MKE) method to determine a sensor set that maximizes the 

KE of the system [6]. Li et al. combined EFI method with MKE method, raised a 
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quick EFI method by QR decomposition, and demonstrated the connection between 

EFI and MKE on the I-40 Bridge [7].Carne and Dohrmann used the correlation of 

target mode shapes and defined the sensor set that minimizes the off -diagonal term 

of correlation matrix [8]. Papadimitriou et al. introduced the information entropy 

norm as a measure that best corresponds to the objective of structural testing which 

is to minimize the uncertainty in the model parameter estimates [9]. Lim employed 

the method based on a given rank for the system observability matrix that satisfies 

modal test constraints to determine sensor locations [10]. 

The non-traditional techniques mainly include some powerful heuristic and meta -

heuristic techniques motivated by physics and biology, e.g. genetic algorithm (GA), 

simulated annealing, tabu search, monkey algorithm, particle swarm optimization, 

etc. [11]. Liu et al. introduced an improved genetic algorithm to find the optimal 

sensors placement for spatial lattice structure [12]. Yi et al. developed an improved 

genetic algorithm, called generalized genetic algorithm (GGA), to explore optimal 

placement of sensors [13]. Feng et al. [14] explored the use of GA in optimizing 

both the deployment and the modulated field of view (FOV) of the PIR sensors for 

improving the localization performance. Zhan et al. introduced Tabu search (TS) 

algorithm to solve the OSP problem in the field of the structural health monitoring 

and moving force identification [15]. Tong et al. [16] presented an improved 

simulated annealing (SA) algorithm, which can increase SA’s random search 

performance while minimizing the computation efforts, to solve the sensor 

placement problem. Yi et al. developed a niching monkey algorithm (NMA) by 

combining the monkey algorithm (MA) with the niching techniques for sensor 

placement optimization [2]. Zhang et al. proposed an improved particle swarm 

optimization (IPSO) algorithm for the optimal sensor placement of latticed shell 

structure [17].  

The monkey algorithm (MA), inspired by the mountain-climbing processes of 

monkeys, was firstly introduced by Zhao and Tang in [18]. Yi et al. adopted MA to 

solve the OSP for structural health monitoring [19, 20]. Zheng proposed an 

improved MA with dynamic adaptation [21]. MA consists of three main processes, 

namely, climb process, watch-jump process and somersault process. Climb process 

is used to explore the local optimal solution. Watch-jump process is designed to find 

out whether there are higher mountains around it when its own mountaintop is 

arrived. Somersault process makes the monkeys transfer to new search domains 

rapidly. 

In this paper, the initial monkeys are generated by using chaos variable and 

binary coding. Because there is one-to-one correspondence between the binary 

coding and the entire solution set of OSP problem, the ergodicity of chaotic variable 

is put to full use. And a greedy strategy is adopted to improve the efficiency of local 

search. 

The rest of the paper is organized as follows. In Section 2, the finite element 

model of a suspension bridge structure is presented and the mathematical model of 

the structure is also modeled. Section 3 is concerned with the implementation of 

CMA in details. And Section 4 analyzes the results by comparing CMA and MA 

methods for OSP. Finally, a conclusion is made for this paper. 

 

2. Mathematical Model of A Suspension Bridge 

The OSP is a typical combinatorial optimization problem. The objective of the 

optimization problem is to minimize the number of sensors and to locate them 

properly for the quality estimation of target dynamic modes. The optimal number of 

sensors and their locations are expected to simultaneously produce the minimum 

sensor management cost as well as accurate estimation of structural  modal 



International Journal of Control and Automation  

Vol.9, No.1 (2016) 

 

 

Copyright ⓒ 2016 SERSC  425 

parameters [3]. Essentially, the first task of this optimization problem is to analyze 

the structure and determine the objective function for achieving the optimal solution. 

 

2.1. Finite Element Model 

 

As one of the typical complex structures, a suspension bridge is selected for the 

example of the OSP. Reinforced concrete stiffening truss system is adopted in the 

suspension bridge. Reinforced concrete is the material of the main tower. H tower is 

employed in the transverse bridge. Reinforced concrete truss is applied in stiffening 

girder. ANSYS13. 0 is used to establish finite element model (FEM) of the bridge. 

SHELL63 element is used in the bridge panel. BEAM4 unit is used in stiffening 

girder and bridge tower.  LINK10 unit is used in main cable and sling. The FEM of 

the bridge is shown in Figure 1. 

 

Figure 1. FEM of the Suspension Bridge 

To obtain the mode shapes data of the suspension bridge, modal analysis is 

conducted on the FEM of the bridge. Considering the low order modes having larger 

coefficients, the first 9 mode shapes are extracted, which are shown in Figure 2. 

And the first 9 modal frequencies are calculated. The first 9 modal frequencies and 

mode shape characteristics are given in Table 1. 

 

(a) The first mode shape  

 

(b) The second mode shape 
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(c) The third mode shape 

 

(d) The fourth mode shape 

 

(e) The fifth mode shape 

 

(f) The sixth mode shape

 

(g) The seventh mode shape 

 

(h) The eighth mode shape
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(i) The ninth mode shape 

Figure 2. The First 9 Mode Shapes of the Bridge 

Table 1. The First 9 Modal Frequencies and Mode Shape Characteristics 

Order number Frequency /Hz Mode shape characteristic 

1 0.5118 Symmetric lateral bending of main beam 

2 0.5384 Anti-symmetric lateral bending of main beam 

3 0.7535 Symmetric torsion of main beam 

4 0.8647 Symmetric torsion of main beam 

5 0.9456 Symmetric torsion of main beam 

6 1.0227 Symmetric lateral bending of main beam 

7 1.0307 Anti-symmetric lateral bending of main beam 

8 1.3254 Symmetric lateral bending of main beam 

9 1.5650 Symmetric torsion of main beam 

 

2.2. Mathematical Model 

Denote 
n m

Φ  the modal matrix, which consists of the data from modal analysis, 

where n  is the number of degrees of freedom (DOFs); m  is the mode order. We 

need to select s  DOFs from n  DOFs as the final sensor locations. Modal assurance 

criterion (MAC), which is a commonly used criterion [3], is applied to evaluate the 

correlation between the modal vectors so that the measured modal vectors can be 

easily distinguished. The maximum off-diagonal element of MAC is selected as the 

objective function of the OSP. The mathematical model can be expressed as follows. 

 

   

2

  

    

( ) m a x

T

i j

s m ij T T

i j i i j j

f




 
 

  

 
 

Φ M A C
 

   
 (1) 

where 0 ( ) 1
s m

f


 Φ ; 
s m

Φ =
 1  2  

[    ]
m

   ;
s m

Φ  denotes the modal matrix of a 

solution with s  DOFs in placement problem; 
 i

  and 
 j
  represent the i th and j th 

column vectors in matrix
s m

Φ , respectively; and the superscript T denotes the 

transpose of the vector. In equation (1), if the off-diagonal element 
ij

M A C ( )i j  

tends to zero, it indicates that there is little correlation between the modal vector 
 i

  

and the modal vector
 j
 , that is to say, the modal vector can be distinguished easily.  
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3. Chaos Monkey Algorithm 

Although the MA can successfully find optimal or near-optimal solutions to the 

optimization problems with large dimensions and a huge number of local optima, 

the values of random variable in initialization process, climb process, watch-jump 

process and somersault process cannot guarantee the ergodicity [2-21]. Inspired by 

the chaos optimization algorithm [22], similar to those in Refs. [2-21], the idea of 

chaotic search strategy is introduced to monkey algorithm, which is called chaotic 

monkey algorithm (CMA), to avoid repeating search in the same domains and 

falling into local optimum. 

In this study, the chaotic variable is used to replace the random variable in CMA, 

and the binary coding is adopted for the OSP multivariable problems. The details of 

CMA are described in the following sections. 

 

3.1. Binary Coding 

Binary coding is intuitive and convenient for the OSP, so it is adopted for the 

optimal sensor placement problem. Let n  denote the initial number of candidate 

sensors and s  denote the final number of sensors determined. The binary coding for 

a solution can be expressed as
0 1

( , , .. . , , . . . , )
n

T

j
x x x xX , {1, 2 , , } .j n  If 

j
x is 1, there 

is a sensor on that DOF. If 
j

x is 0, there is no sensor on that DOF. And the condition 

1

n

j

j

x s



  is satisfied. 

The conversion between binary coding X  and modal matrix 
s m

Φ  is the process 

of removing the rows of 
n m

Φ . In this process, remove those rows of 

n m
Φ corresponding to those | = 0 , [1, 2 , , ]{ }

j j
jx x n in X . For convenience, this 

process is represented by equation (2). 

 

1
( , )

s m n m n
g

  
Φ Φ X  (2) 

 

where 
s m

Φ is the modal matrix of a solution with s  sensors in OSP; 
1n

X is the 

binary coding corresponding to a solution.  

For a simple example, substituting 4n  , 2m  , 3s   and 
4 1

(1, 0 ,1,1)
T


X   into 

equation (2) , and take 
4 2

Φ

1 5

2 6

3 7

4 8

 

 

 
 

 
 

 as the input modal matrix of function g , the 

output modal matrix of g  is 
3 2

Φ  

1 5 1

2 6 0
,

3 7 1

4 8 1

g
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2 6

3 7

4 8

 

 

 
 

 
 

1 5

3 7

4 8

 

 

 

  

can be 

easily obtained by deleting the 2nd row of 
4 2

Φ . 

3.2. Initialization 

The characteristics of ergodicity and randomness of chaotic variable can make the 

chaos optimization algorithm jump out of local optimum, and speed up the search 

process. In order to avoid falling into local optimum, chaotic search strategy, 



International Journal of Control and Automation  

Vol.9, No.1 (2016) 

 

 

429 

instead of random process, is introduced to determine the values of random variable 

of monkey algorithm. 

Here, the well-known logistic map is adopted: 

1
4 (1 )

i i i
cc c


    (3) 

where 
i

c  is chaotic variable; 0 1
i

c  ;  0
0, 0 .2 5, 0 .7 5,1c  . 

The binary coding of monkey is generated by using Algorithm 1. This algorithm 

is executed N  times when the size of monkeys’ population is N . In the 

implementation of Algorithm 1, the order of bits is changed, but the number  of 0 

and the number of 1 are not changed. So there is a one-to-one correspondence 

between the positions of monkeys (binary coding set) and the solution set of OSP. 

 

3.3 Climb Process 

Climb process is used to explore the local optimal solution. In other words, climb 

process can generate a better position than previous one by changing some bits of 

current position .X  

Algorithm 1 Chaotic Shuffle 

Input: The number of candidate DOFs n and the number of sensors s. 

Set (1,1, .. . ,1 , 0 , 0 , .. . , 0 )
T

s n s

X   

For i  from n  to 1: 

Set 1j c i   , where c is chaotic variable, and (0 ,1)c  . 

Set j  is the nearest integer not greater than i . 

Swap ( ( )iX , ( )jX ). 

Return X 

Output: The chaotic coding of a solution  X. 

In order to raise the efficiency of climb process, a kind of greedy local search 

strategy is adopted. The best DOF is selected in each step. The entire process is 

executed 
c

N  times for each monkey as depicted in Algorithm 2. 

Algorithm 2 Climb Process 

Input: The position of a monkey
0 1

( , , ..., , ..., )
T

j n
x x x xX . 

Set 
b es t

n u llX  

For j  from 1 to n : 

If 0
j

x   then 

Set 1
j

x   

If 
b es t

n u llX  or 
b est

( ( , )) ( ( , ))
n m n m

f g f g
 

Φ X Φ X  then 

Set 
b es t

X X  

Set 0
j

x   

If 
b es t

n u llX  then  

Return nu ll  

Set 
b es t

X X  (Note: there are 1s   1
j

x   in current X ) 

Set
b es t

n u llX  

For j  from 1 to n : 

If 1
j

x   then 

Set 0
j

x   

If 
b es t

n u llX  or 
b est

( ( , )) ( ( , ))
n m n m

f g f g
 

Φ X Φ X  then 

Set 
b es t

X X  
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Set 1
j

x   

If 
b es t

n u llX  then  

Return nu ll  

Return 
b es t

X  

Output: A better position 
b es t

X  than previous one. 

Step 1: A DOF from the n s  DOFs with no sensor is determined by the value of 

objective function. For example, the DOF leading to the smallest value of objective 

function is chosen. After a sensor is placed on the DOF, the number of sensors is 

increased form s  to 1s  , and the modal matrix is changed from Φ
s m

 to 
( 1)s m 

Φ .  

Step 2: A DOF from the 1s   DOFs with sensor is determined by the value of 

objective function. For example, the DOF leading to the smallest value of objective 

function is chosen. After a sensor is removed from the DOF, the number of sensors 

is decreased form 1s   to s , and the modal matrix is changed from 
( 1)s m 

Φ  to 
s m

Φ . 

In the end of Algorithm 2, the number of 0 and the number of 1 are not changed. 

So, there is a one-to-one correspondence between the positions of monkeys (binary 

coding set) and the solution set of OSP. 

Applying the method by Carne and Dohrmann [8], the maximum off-diagonal 

element of MAC is calculated efficiently by only adding or deleting one DOF. So 

the efficiency of Algorithm 2 is significantly improved. The procedure of the 

method, depicted in formula (4), is used to add one sensor at a time. 

 
( )( )

( )( )

i j k i k j i j k i k

ij

j

i i k i k i j j k j k j

k

a a

a a

   

   

 


 
M A C  (4) 

where 
ij

a  are the elements of A= T

s m s m 
Φ Φ ; 

k i
  and 

k j
 are the elements of 

n m
Φ . 

 

3.4 Watch-Jump Process 

The purpose of watch-jump process is designed to find out whether there are 

higher mountains around it and when its own mountaintop is arrived. For a CMA 

with binary representation, the watch-jump process is generally performed by 

independently and chaotically swapping two bits with different values (e.g. one is 1, 

another is 0). The entire process is executed 
w

N  times for each monkey as depicted 

in Algorithm 3. In the implementation of Algorithm 3, the number of 0 and the 

number of 1 are not changed. So there is a one-to-one correspondence between the 

positions of monkeys (binary coding set) and the solution set of OSP. 

Algorithm 3 Watch-jump Process 

Input: The position of a monkey
0 1

( , , ..., , ..., )
T

j n
x x x xX . 

Set 
b es t

X X  

Random select 
a

x  from{ | 1, [1, ]}
j j

x x j n   

Random select 
b

x  from { | 0 , [1, ]}
j j

x x j n   

Set 0
a

x   and 1
b

x   

If 
b est

( ( , )) ( ( , ))
n m n m

f g f g
 

Φ X Φ X  is better than previous one then 

Set 
b es t

X X  

Output: A better position 
b es t

X  than previous one. 
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3.5 Somersault Process 

Somersault process makes the monkeys transfer to new search domains rapidly . If, 

after a monkey exhausts its neighbor position, no one is better than its current 

position, then the somersault process is executed to generate a new position.  

For all monkeys
0 1

( , , .. . , , . . . , ) ,
T

i i i ij in
x x x xX  {1, 2 , , }Ni  , the somersault process 

is as follows: 

(1) The coordinate of monkeys’ center 
c e n te r

X  is calculated, and the top 10 bits of 

c e n te r
X  are found. 

(2) A bit is chaotically selected from the top 10 bits, which is always set to 1 for 

monkeys who need to execute the somersault process. 

(3) The process similar to Algorithm 1 is performed for each monkey to 

chaotically generate other 1s   bits. 

The entire process is depicted in Algorithm 4. At the end of Algorithm 4, the 

number of 1 is s  in binary coding. So there is a one-to-one correspondence between 

the positions of monkeys (binary coding set) and the solution set of OSP.  

Algorithm 4 Somersault Process 

Input: The positions of all monkeys
0 1

( , , ..., , ..., )
T

i i i ij in
x x x xX , {1, 2 , , }Ni  . 

Set 
c e n te r 1 2

1 1 1 1

1
, , . . . , , . . . ,

T
N N N N

i i i j in

i i i i

x x x x
N    

 
  

 
   X  

Chaotically select a k from  cen te r

{1,2 , , }

| a rg to p 1 0 ( )
j n

k k j


 
 

 

X  

For each monkey: 

Chaotically generate a new position and guarantee 
n ew

( ) 1k X  

Set 
n ew

X X  

Output: The positions of all monkeys
0 1

( , , ..., , ..., )
T

i i i ij in
x x x xX , {1, 2 , , }Ni  . 

The termination condition of CMA is determined by 
m a x

N (the maximum number 

of iterations). If the termination condition is satisfied after the somersault process, 

then the CMA outputs the best solution that appears in the whole process of CMA; 

otherwise, go to the climb process. It is also important to note that the best solution 

should be updated at each step of CMA. 

The flow chart about above processes is shown in Figure 3. 

 

4. Analysis of the Results 

In order to show the effectiveness of CMA for OSP problem, the result of sensor 

placements by CMA is compared with that by MA. The original data is generated by 

the FEM of the suspension bridge as described in section 2.1. The modal matrix is 

obtained by processing the original data. The objective function of OSP problem is 

( )
s m

f


Φ  which is defined in section 2.2.  

The problem of parameters selection in CMA for OSP is studied. After trial and 

error, a group of optimal parameters are determined. The maximum number of 

iteration 
m a x

5 0N  , the maximum number of allowed climb process 
c

3 0N  , the 

maximum number of allowed watch-jump process 
w

3 0N  , the size of monkeys’ 

population 5N  . In order to guarantee the effectiveness of comparison between 

CMA and MA, the same parameters are set to both of the two algorithms. 

For the purpose of test convenience, the nodes are selected only from the nodes 

on the edges of bridge. There are 107 nodes on each edge. The total number of 
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nodes is 214. The displacements of nodes on x-axis are so weak that it is difficult to 

measure, so the displacements of nodes on y-axis and z-axis are considered as the 

candidates of DOFs. In other words, the number of the candidate DOFs is 

214 2 428  . Suppose there are 18 sensors being used to measure the displacements, 

the specific problem now is that how to minimize the objective function ( )
s m

f


Φ . 

Here, 
s m

Φ = 
1 8 9

Φ , where the rows are selected from the rows of
4 2 8 9

Φ ; 9 represents 

the number of mode shapes needed to measure. 

The difference between CMA and MA is search strategy and coding format. In 

CMA, the initial monkeys are generated by using chaos variable and binary coding 

to enhance the global search capability, and a greedy strategy is adopted to improve 

the efficiency of local search. In MA, the initial monkeys are generated by using 

random variable and decimal coding reduces the global search capability, and 

random search strategy is adopted in climb process. 

 

Start

End

Chaos based initializtion

(Algorithm 1)

Clamb process

(Algorithm 2)

Watch-jump process

(Algorithm 3)

Somersault process

(Algorithm 4)

Reach Nmax?

Set  N  Nmax  Nc  Nw

Reach Nc?

Is there a 

better position?

Reach Nw?

Y

N

Y

Y

N

N

Y

N

For each monkey:

Is a better position is found

 in Watch-jump process?

N

Y

 

Figure 3. Flow Chart of CMA for OSP Problem 
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MA and CMA for OSP are implemented by using g++ 4.8.1 compiler. The 

statistical results are listed in Table 2. As illustrated in Table 2, the mean, standard 

deviation, minimum and maximum by CMA are less than those by MA, and the 

average run time of CMA is slightly longer than that of MA. Figure 4 shows that the 

sensors’ placement by CMA. 

Table 2. Statistical results for OSP by using CMA and MA methods 

Method Minimum Mean Maximum Std. dev. Ave.Time 

(s) 

MA 0.032394 0.044347 0.069189 0.011050 1.318000 

CMA 0.021615 0.034692 0.043806 0.006668 1.466400 

 

 

Figure 4. Placement of Sensors by CMA 

 

5. Conclusions 

In this paper, a new MA, called chaotic monkey algorithm (CMA) is presented. And 

then this CMA is adopted to solve the optimal sensor placement problem. Unlike the 

traditional MA, this method is improved by introducing chaotic searching strategy 

and using binary encoding. And this study takes a suspension bridge to verify the 

proposed approach. Modal analysis is carried out to extract the first 9 order mode 

shapes. The maximum off-diagonal element of MAC is selected as the objective 

function of OSP problem. Initialization, climb process, watch-jump process and 

somersault process are described as means for searching the optimal solu tion. The 

sensors’ placement result is influenced by the parameters of the algorithm which are 

determined after trial and error. The advantage of CMA in the OSP problem is 

shown by comparing the statistical results of CMA and MA. 
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