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Abstract 

Large numbers of nodes are often densely deployed to deliver the desired environmental 

attributes to the sink in Wireless Sensor Networks (WSNs), so there is a high spatial 

correlation among the readings of close sensor nodes. Given a certain requirement for 

accuracy, only part of the sensor nodes should be required to transport the data to sink. We 

proposed an Energy-aware Iterative Sampling Framework (EISF) for data gathering to reduce 

the total number of transmissions by exploiting the correlation. In our method, all nodes in a 

WSNs compete for reporting nodes with energy-related probability and each nonreporting 

node autonomously determines whether its own readings are redundant or not by utilizing the 

overheard packets transmitted by the nearby reporting nodes for each epoch. The redundant 

nodes will be put into sleep mode. After a limited number of iterations, our algorithm can select 

a set of sampling nodes to transport data with accuracy guarantees. The results of simulation 

experiments using the real data demonstrate that our proposed approach is effective in 

prolonging the network life. 

 

Keywords: energy-aware, data gathering, iterative sampling, spatial correlation, wireless 

sensor networks 
 

1. Introduction 

Recent advances in wireless communications and electronics have enabled WSNs to be 

applied in a wide range of applications, such as battlefield surveillance, environmental 

monitoring, and disaster relief. A large number of sensor nodes are often deployed to 

collect environmental surveillance data, temperature, humidity, and etc. However, 

spatial correlation usually exists among the readings of close nodes because of 

redundant deployment. The measures of a node may be predicted from the readings of 

its nearby nodes with high confidence. Therefore, the “over-sampling” problem will 

occur when the nodes transporting readings to sink in one cycle is enough. Sensor nodes 

are battery powered and sending the large mount of data rapidly depletes their energy.  

To achieve energy efficiency, we hope to appoint a part of nodes as sampling nodes to 

transmit data by reducing the spatial correlation and the other node’s data can be 

interpolated at the sink with the known data. 

In this paper, we use two strategies to improve the efficiency of the network. The first 

one is to use a few nodes to transport data and enforce error control; The second is to 

increase the probability of being sampling nodes for the nodes with high energy.  We 

propose an Energy-aware Iterative Sampling Framework for data gathering (EISF) to 
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select a subset of sampling nodes iteratively through an energy-aware competitive 

mechanism. In data gathering phase, only the sampling nodes forward the data to sink.  

Firstly, we assume all nodes know its location and the sink’s and transport data to sink 

periodically. In every cycle, some nodes will be selected as sampling nodes and then 

they transmit the readings to their neighbors. The other nodes those failed to be selected 

will determine whether its reading is redundant or not based on the information 

transmitted by sampling nodes. If a node’s redundancy is no more than the error bound 

set in advance, it transmits the confirming message to the transmitters and then goes to 

sleep until next cycle. The redundancy of readings among nodes is estimated by Inverse 

Distance Weighting interpolation (IDW). All sampling nodes transmit their readings and 

the confirming message to sink after a limited number of iterations. Nodes will calculate 

the probability according to their residual energy in each iteration. The probability 

decides whether a node will be a sampling node or not. So the node with more energy will 

be more likely to be a sampling node. The energy consumption of the whole network will 

be more effective. The sink will use the same interpolating method to interpolate the 

missing data using the sampling nodes’ readings. 

Our sampling framework for data gathering only studied the spatial correlation among 

nodes. The temporal correlation of monitoring data was exploited in [1, 3, and 7] and can 

be applied into our method. The rest of the paper was organized as follows: In Second 2, 

we described the existing methods for data gathering and discussed about their 

advantages and disadvantages. In Section 3, we described our framework and the 

algorithms in more detail. In Section 4, we simulated our method and compared the 

performances of it with other two methods’ using real experimental data. In the last 

section, we concluded the paper and described some further works. 

 

2. Related work 

A very important problem in applications of WSNs is how to save the energy of nodes 

and prolong the life of the network. Sending a message is a costly energy consuming 

operation. Energy-efficient frameworks for data aggregation can decrease the energy 

consumption on communication. 

Researchers have studied some kinds of frameworks for data gathering for WSNs [6-18]. 

The methods in [9, 11, and 17] are model-driven sampling frameworks, using an approach 

similar to data prediction. In general, the sink and nodes have the same prediction model. The 

models are used to decide the data of a node is redundant or not, and sample the nodes to 

transmit data. However, the models need to be trained and preserved frequently that 

consumes a lot of power. In the study [17], the researchers use a dynamic probabilistic model 

to minimize communication by comparing the difference between prediction and 

measurement. The sink keeps the prediction instead of real reading of a node when the 

deviation is small enough. The centralized methods in [3, 8] waste a lot of energy in 

communication among nodes and are not good fits for large scale applications. In the studies 

[12, 13], researchers studied an efficient-energy data collection method in connection with the 

scheduling policies of MAC. The author of the paper [12] defined a spatial correlation-based 

collaborative MAC protocol (CC-MAC) that regulated sensor node transmissions so as to 

minimize the number of reporting nodes. The author of the paper [16] considered the problem 

of correlated data gathering in sensor networks with multiple sink nodes and proposed a 

method with controlled sampling frequency. However, it had complicated process of 

optimization. The frameworks based on random sampling method [15, 18] were proposed to 

collect data in a more achievable way. The method [15] exploited packet overhearing to 
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choose the nodes for transporting data. Each node determined the redundancy of its reading 

by comparing the actual reading with the estimated value calculated by the overheard 

readings. Only the nodes whose data were required to grasp information on the whole area 

transmitted their data to sink. But the energy consumption for communication among nodes 

was too much at the beginning of each cycle. In the study [18], all nodes transmitted their 

readings to adjacent nodes with a fixed probability. The reporting nodes were the sampling 

nodes as “pacesetters”. The nonreporting nodes calculated the redundancy with the overheard 

data. If the difference between real value and the estimated value of a node was within a 

certain bound, it needed not to forward data to sink and went to sleep, otherwise it became a 

sampling node to transmit the readings. The algorithm chose reporting nodes reckoning 

without the residual energy of nodes and the number of iterations depends on the initial 

probability. 

We proposed an energy-aware iterative method to choose sampling nodes to forward 

data. The probability of being chosen was related to the residual energy of nodes. The 

higher the energy was, the higher the probability of being selected was. So the life of the 

network could be prolonged because of the even energy consumption. In our algorithm, 

the initial probability could be a small number enough, and increased to 1 as the increase 

of iteration times. The size of the set of sampling nodes increased to the approximate 

optimal value at the last iteration. IDW (inverse distance weighting interpolation) is 

simple and a more appropriate interpolation method for the nodes with limited computing 

capability. Nodes used IDW to calculate the redundancy rate in our method. 
 

3. Our Framework 

Senor nodes usually are densely deployed in the monitoring area. In general, there is a 

high spatial correlation among the readings of adjacent nodes. So we can sample a part of 

nodes to transmit data to sink instead of all nodes. We proposed an Energy-aware Iterative 

Sampling Framework for data gathering in WSNs. The following is the detail introduces. 

 

3.1. Redundancy determining 

Inverse Distance Weighting interpolation method (IDW) is widely applied because of 

its ease [19, 20 and 21]. IDW is based on the close similarity principles: the shorter the 

distance between two things is, the more similar they are. The unknown measure at a 

position can be interpolated by means of a weighted average of the measures associated at 

the known points. In WSNs, IDW can be used to predict the unknown measure of a node 

with the known measures of the neighboring nodes. It is achieved by the following 

function: 

 

(1) 

 

ˆ t

iV stands for the interpolated value of node i at time t; Node j belongs the set Z of adjacent 

nodes;  ,i j is the distance weight between node i and j. If  ,d i j is the distance 

between node i and j, the weight can be expressed as followed: 

 

 

 

1,

1,

,

ˆ

,

n
t

j

j j it

i n

j j i

i j V

V

i j





 

 









International Journal of Grid and Distributed Computing 

Vol. 6, No. 4, August, 2013 

 

 

12 
 

 

(2) 

 

The absolute difference between the predicted value ˆ t

iV and real measure
t

iV is the 

error  called the redundancy of a node: ˆ t t

i iV V   . Our purpose is to select a part of 

nodes as sampling nodes to forward data to sink with accuracy guarantees and put the 

redundant nodes into sleep model to save energy. Nodes decide whether they are 

redundant or not based on  . The figure 1 shows the system overview, the black nodes are 

redundant nodes and the others are sampling nodes. The base station interpolates the 

global data and provides it to users. 

 

 

Figure 1. System overview 

 

3.2. Energy-aware Iterative Sampling Algorithm 

 

 

Figure 2. Overview of EISF 
 

Figure 2 shows the overview of EISF. Each cycle consists of three phases, sensing 

phase, competing phase and data transporting phase. Competing phase consists of 

multiple TMDA frames, reporting frame, determining frame and confirming frame.  At 

first, all nodes keeping awake sense the data and then overhear the packets transmitted by 

the neighbors. In the competing frame, nodes will be chosen as reporting nodes with the 

individual probability. The probability is related with the remaining energy. We assume 

that the initial energy of a node is 0E , the residual energy is rE , MaxRound (the number 
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of the most iterations) is k (k is more than 2), and the probability of the node at iteration i 

is: 

 

(3) 

 

iP  increases progressively with the iterations, and will increase to 1 at iteration k-1. So 

every node will have a chance of being a reporting node or not. And the selection of the 

set of sampling nodes (S) can be finished within certain iterative times k. We will get a 

sub-optimal set of sampling nodes at iteration k. 1kP  =1, we can get: 

 

 

(4) 

 

Then the probability iP is: 

 

(5) 

 

Figure 3 shows the probability tendencies of the two nodes with different residual 

energy within ten iterations. The node with higher energy always has a higher 

probability in each iteration. The probabilities of the two node increase to 1 at ninth 

iteration. 
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Figure 3. The probability tendencies 
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After each iteration, the sampling nodes broadcast their data packets to its neighbors 

with a certain transmit energy. A data packet consists of information on the identifier, the 

position and the readings of the transmitter. The nonsampling nodes overhear the data 

from the neighbors and calculate the individual redundancy according the information. If 

the redundancy isn’t more than the error bound, the node will send conforming 

information consisting of its ID to the transmitters and then go to sleep until the next 

cycle, or not compete in the next iteration. Then the sampling nodes go to sleep until it is 

time to transmit data to sink at the end of the cycle. In the data transporting frame, all 

sampling nodes transport their data to sink. Algorithm 1 shows the energy-aware 

iterative sampling algorithm of nodes. 

 

Algorithm 1: 

       1: All nodes sense the data at the beginning of a cycle 

          2: while Round ≤ MaxRound  

          3:    for 1 ≤ i ≤ n       there are n nodes 

          4:      if node i isn’t sleeping 

          5:        rand       a random number between 0 and 1 

          6:          =P (Round)       counts the probability 

          7:        if rand ≤    

          8:          put node i into S       becomes a sampling node  

          9:          reporting its packet to its neighbors 

         10:        end 

         11:      end 

         12:    end 

         13:    for 1 ≤ i ≤ n 

     14:      if node i fail to be a sampling node 

         15:        R      determinesg redundant or not 

         16:        if R is true 

         17:          transmits confirming information 

         18:          goes to sleep       the reading the node is redundant 

         19:        end 

         20:      end 

         21:    end 

         22:    the sampling nodes go to sleep 

         23:    Round=Round+1                

         24: end 

 

3.3. Gathering data 

The nodes in the sampling set S transmit data to sink by multihop. Here we can use the 

geographical routing alike GEAR [22]. If a reading is sent by a sensor, it will be used. 

Then the sink interpolates the missing data by the same interpolation method based on the 

readings of the sampling nodes and the information about the ID of the nonreporting node 

in the confirming message. The sink will calculate the measure of one node with all 

readings consisting of its ID. When a node has no sampling data about its ID because of 

packet loss, its data can be interpolated with adjacent sampling nodes’ readings. At last, 

all the data of the network will be collected within the error bound. 
 

iP

iP
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4. Performance Evaluation 
 

4.1. Simulation Environment 

The performance of our framework was evaluated using the energy model [23]. We 

compare EISF with ODSA [15] and E2K [18] in the same simulation environment. This 

real-world data refers to an Intel lab data set [24]. There were 54 nodes running for a 

month, monitoring temperature, voltage, humidity, and light.  We populated the missing 

data with the average of the values during the previous and subsequent epochs at the 

same node. Our simulations were performed in Matlab 2009b using one-week 

temperature records. 

 

4.2. Simulation Results 

We proposed the energy-aware iterative sampling frame (EISF) to choose the sampling 

nodes set S. The number of the sampling nodes transmitting data to sink increases to an 

approximate optimal value while the iteration progressing. At last, more nodes save the 

energy of transmitting data. As the probability of being a sampling node has a relation 

with the current energy situation of a node, a node with higher energy has a higher 

probability to be a sampling node that balances the energy consumption. Other nodes 

estimate their readings based on the readings sent by sampling nodes and decide whether 

their readings are required to be transmitted or not. The nodes those are redundant or have 

very little energy will have more time to rest. 
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Figure 4. The number of the sampling nodes in every cycle 
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Figure 5. The residual energy of nodes in the 50th cycle 
 

Figure 4 shows that the average number of the nodes of S in every cycle. EISF has a 

smaller size of the sampling nodes S in every cycle. In some cycles, the number is half 

of E2K’s or ODSA’s. So EISF could save more energy for tansmittingdata. Figure 5 

shows the residual energy of the nodes in the last cycle. The residual energy of nodes was 

more than the other two methods. Our method had more effective energy consumption 

and made nodes die at the similar speed because of the energy-aware competing strategy. 
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Figure 6. The number of the sampling nodes with different MaxRound 
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Figure 7. The life of the networks 
 

The number of sampling nodes has an optimum for a deployed network. The result in 

the Figure 6 shows that the number is tending towards stability with the increasing of 

iterations. For the situation of the network of Intel lab, the number is stabilized after 10th 

iteration. So we can choose the sampling nodes set S within a certain number of iterations. 

As shown in Figure 7, our method prolonged the life of the network by 30%-50%. 
 

5. Conclusions & Further Work 

We have introduced our framework for gathering data: an energy-aware iterative 

sampling framework, choosing fewer nodes to finish the collection of data. The method 

reduced the communication traffic and prolonged the life of the network. The 

performance of our method was better than others’ because of the energy-aware 

competitive iterative mechanism. In the further, we will explore the using of a new 

time-series forecasting model for reducing the temporal correlation of data for data 

gathering. We will apply the model to our framework. 
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