
International Journal of Hybrid Information Technology 

Vol.8, No.8 (2015), pp.57-68 

http://dx.doi.org/10.14257/ijhit.2015.8.8.05 

 

 

ISSN: 1738-9968 IJHIT 

Copyright ⓒ 2015 SERSC 

Virtual Memory Systems Should Use Larger Pages rather than 

the Traditional 4KB Pages 
 

 

Pinchas Weisberg and Yair Wiseman 

Computer Science Department, Bar-Ilan University, Ramat-Gan 52900, Israel 

wiseman@cs.biu.ac.il 

Abstract 

Choosing the best page size for Virtual Memory requires considering several factors. A 

smaller page size reduces the amount of internal fragmentation. On the other hand, a 

larger page needs smaller page tables. However, this paper argues that the main reason 

to prefer a larger page is to increase the virtual to physical translation speed i.e. because 

the size of a TLB is limited, to facilitate increasing of TLB coverage we have to use larger 

pages 
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1. Introduction 

Over the history of memory management units (MMUs) of processors, their 

hardware has employed page size of 0.5KB to 8KB. E.g. VAX developed by Digital 

Equipment Corporation (DEC) in the mid-1970s used 512 bytes page size [1]. In the 

mid-1990s Digital Equipment Corporation decided to upgrade its processors and 

replace the old VAX by the DEC Alpha. The page size of DEC Alpha was 

considerably increased to 8KB [2]. Sun 1 manufactured by Sun Microsystems and 

launched in 1982 has a 2K bytes page size [3]. IA-32/x86 has been making use of 

4KB page size since the mid-1980s [4] and even when they moved to x86-64 at 

2003 the 4KB page size was remained [5]. 

Essentially, a 4KB page size has been employed for Virtual Memory since the 

1960s. What's more, nowadays, the most widespread page size is still 4KB. 

Selecting a page size is actually compromising between a number of concerns  and 

issues taken into account. 

From one point of view, a larger page size will cause more fragmentation; 

therefore selecting a smaller page size will save some memory space. Indeed, when 

the physical memory is quite small, such a consideration is very significant because 

too much load on a small memory can cause a Thrashing [6, 7]. However, nowadays 

computer hardware usually has abundance of memory which is usually much more 

than a conventional user needs, so the trashing issue is usually less important and 

frequently inconsiderable.  

In addition, when several processes share memory, the sharing is always of full 

pages [8]. Therefore, if the page size is larger, the resolution will be poorer. 

On the other side, selecting a larger page will enlarge the TLB coverage and as a 

result will reduce the TLB misses and the necessity to read page tables in the main 

memory. 

Over the years when many processors have used the traditional 4KB; however, 

the memory size has been upgraded from some hundreds of Kilobytes to several 

Gigabytes, therefore we can forfeit some memory space so as to obtain higher 

performance [9]. 

The most important motivation for have a preference of larger page is making the 

translation time of virtual addresses to physical addresses better. In a virtual 
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memory scheme, the memory management unit (MMU) hardware translates each 

virtual address generated by the CPU into a physical address. The page tables of  all 

the processes containing all the physical addresses for the possible virtual addresses 

are stored in the main memory. This means that each access to a memory address 

will be doubled, because an extra access for the translation will be needed. To 

facilitate a shorter virtual to physical address translation time, the most recently 

used addresses are stored in a Translation Lookaside Buffer (TLB). TLB is a high-

speed access cache implemented by a dedicated registers.  

Some processors have just one level of TLB cache; whereas some processors like 

Itanium 2 have two levels of TLB cache [10]. In the first level of the TLB memory, 

Itanium 2 has 32 entries Instruction TLB cache and 32 entries Data TLB cache. In 

addition, Itanium 2 has 128 entries Instruction TLB cache and 128 entries Data TLB 

cache in the second level of the TLB memory. 

If a TLB miss occurs at the first level, the second level is accessed. The penalty 

for such a miss is just 2 clock cycles for a miss in the Instruction TLB and 4 clock 

cycles in the Data TLB; however, if s miss occurs at the second level, an access to 

the main memory is required because the physical address must be looked for in the 

original page table in the main memory and then the physical address have to be 

loaded into the appropriate TLB. Because an access to each of the TLBs must take 

only very short time, the TLBs are built with only a small number of entries. 

The term "TLB coverage" refers to the total amount of memory mapped by all of 

the TLBs. Let us assume TLBs with 256 entries and a standard page size of 4KB. In 

such a case the TLB coverage is only one megabyte of memory. Because the size of 

the TLBs is constrained, to facilitate enlargement of TLB coverage, larger pages are 

required. A different way for better performance can be an improvement of the 

Memory Management Unit cache system [11]. 

However, the most common option for increasing the TLB coverage is by making 

use of super-pages [ 12 , 13 ]. Many contemporary CPU architectures provide a 

support for super-pages. Such an architecture allows the Operating System to make 

use of a number of page sizes. Super-paging mechanism enables selecting a suitable 

page size for any allocation.  

A small page size will be selected for a small spatial locality with the purpose of 

saving memory and a large page size will be selected for a large spatial locality with 

the purpose of enlargement of the TLB coverage. The spatial locality of an 

information segment can be analyzed as we suggested at [14]. 

E. g., very large pages are suitable for allocations of non-paged memory, such as 

for mapping frame buffers or for the fixed pieces of the operating system kernel; 

whereas small page size can be suitable for the kernel stack [15]. When super-pages 

are used for paging the code segment and data segment of a user process, an 

intermediate sized page should be selected. The average unused memory space 

produced by internal fragmentation with too large pages might be substantial. 

Writing even just one byte to such a page can be costly, because there is only one  

dirty bit and there is a need to update the entire page. 

Most of the modern Operating systems do not employ Super-pages, even though 

most of the CPU architectures support Super-Pages [16]. So in point of fact only the 

4KB page size has been employed for Virtual Memory systems in most of the 

architectures since the 1960s. Actually, nowadays, the most frequent page size is 

still 4KB. It should be noted however that Linux running on SGI Altix systems uses 

a fixed page size of 16 KB for all processes, using the 16KB super-page of SGI 

Altix [17]; rather than using the usual 4KB pages that supported as base pages by 

SGI Altix. 

Over the years, the factors that have an effect on the page size have been 

changed. The common memory size of standard computers has been increased from 
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some hundreds of Kilobytes to several Gigabytes. Consequently, standard TLBs 

cover only a small portion of a common memory of contemporary computers. In 

addition, access times of standard contemporary disks have not kept up with 

throughput augments. In last years, usual throughput has been enhanced by a factor 

of 100; though, access time has enhanced by just a factor of 3 [ 18]. Therefore, 

transferring of larger pages from and to a disk has become more reasonable.  

 

2. Selecting Page Size Range Results 

With the intention of assessing the best page size for virtual memory systems, 

several benchmarks from the SPEC suite [19] have been run. The TLB misses have 

been counted so as to observe the differences between the memory usages of a 

variety of benchmarks employing various page sizes. The most acceptable 

preference for a page size is when there will be a substantial reduction in TLB 

misses but with almost no enlargement in memory space usage. 

When making use of super-paging, many operating systems (e. g., HP, IRIX and 

Solaris) employ the Allocation method i.e., the operating system kernel allocates a 

large enough page when the first page fault occurs. These operating systems use this 

method because it is simpler to allocate and map the entire superpage  when the 

operating system accesses the page at the first time and because not enough research 

has been done about the possible advantages of the other complex methods [20]. In 

this paper this scheme for employing super-paging is implemented. 

Many processors supporting super-pages have a range of page sizes. In spite of 

this, as mentioned above, there is no established strategy for the operating system 

kernel to select the most appropriate size.  

There are three major different methods to make use of Super-pages 

 Allocation 

When a page fault occurs, a large page will be allocated and all its base-pages 

will be loaded into the memory. I. e., the page is considered as a super-page in the 

page table without more ado. There are commercial OSes like Solaris MPSS [21] 

that make use of this method for super-paging. 

IRIX [22] and HP-UX [23] implement multiple page sizes in such a method. At a 

page fault time, they allocate large enough pages. In IRIX the preferred page size is 

specified by the user/compiler prior to the application execution by a system call 

compiled into the application code. In HP-UX the page size is specified either by 

the user like IRIX or transparently set by the operating system according to the size 

of the required memory allocation. 

Allocating and populating one large page at the same time is advantageous 

because any access to the large page from the allocation time will not incur a TLB 

miss and will also use only one TLB entry. In addition, transferring many base 

pages from the secondary storage is less efficient than transferring one large page 

entirely. 

 Reservation 

Unlike the allocation scheme, in reservation-based allocation, when the first 

access to an address in a base page occurs, the entire super-page that contains this 

base-page will be allocated, but only the base page will be populated. After that, 

only the base pages in this super-page that induce page faults will be loaded from 

the secondary storage to memory. When the number of the populated frames in the 

super-page reaches a threshold, the missing pages will be fetched from secondary 

storage to memory and the base pages will be promoted into one superpage. 
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In [24] Talluri et al., suggest a reservation based scheme with a TLB that can map 

two fixed page sizes – 4KB and 64KB. Unlike Talluri et al., at [ 25] Navarro 

suggests a reservation based scheme with multiple page sizes wherein promotion 

can be done incrementally. 

The main benefit of reservation based scheme as compared to full allocation 

based scheme is that it defers loading of base pages until it will be more convinced 

that more base pages included in the super-page will be used. It also makes the 

launch time of a process shorter. 

 Relocation 

In a relocation based scheme, base pages are brought to the main memory. The 

memory usage is frequently monitored so as to make a decision when it is beneficial 

to promote several base pages to a super-page. When the system decides on 

promotion, a contiguous area of memory is sought and the base pages are moved 

into it. If not all of the base pages are resident in the main memory, the missing base 

pages will be brought from secondary storage. 

In another paper of Talluri et al., [26] they sugegst a relocation scheme wherein 

there are two page sizes – 4KB and 32KB. The threshold they have set for relocation 

is whether at least half of the base pages have been brought to the main memory. 

Romer et al., [27] suggest a scheme for tracking potential promotions to super-pages 

and deciding dynamically when it is beneficial to promote the base pages to one 

super-page. According to their approach super-pages will be created only when it is 

exceedingly needed therefore internal fragmentation is minimized. 

In this paper a basic super-paging scheme is assumed in which just one of two 

page sizes are selected, either the base page size or a super-page size. According to 

this scheme, the strategy of the operating system kernel is allocating a fixed large 

page only if the memory object is large enough and also there is enough memory 

space for this memory object. When running the SPEC benchmark suite we 

observed that dTLB misses decrease just with larger pages. This can be of help for 

us on the way of deciding about the large page size appropriate for substantial data 

segments. 

 

3. Experiments Results 

With the aim of counting the TLB misses and analyzing the memory usage of a 

variety of page sizes, 12 applications from the SPEC suite have been simulated. 

Such simulations of SPEC benchmarks in reality take a long time to come to an end, 

therefore we traced each benchmark for only its first 48 hours. The hardware used 

for these experiments was a 3.66GHz Intel(R) Xeon(TM) CPU. This hardware was 

dedicated to these benchmark simulations. We used "valgrind" [28] which is a suite 

of simulations based debugging and profiling tools for the Linux operating system. 

One of "valgrind"'s tools called "Lackey" was adjusted to produce a trace of 

memory references. The output of the adjusted tool incorporates a trace of page 

references for all the page size that are power of 2 multiples from 4KB up to 

256KB. 

The traced output includes enormous data. Therefore, if this output was saved 

into a file, it would swiftly enlarge to several gigabytes. To facilitate a solution for 

this constraint, we have used an on-the-fly simulation. The traced output of 

"valgrind" was redirected to another process via a pipe. The other process analyzed 

the data and generated the results. 

This analyzing process actually simulated an LRU based TLB and counted the 

TLB misses for every page sizes. The simulated TLB of this process was a fully 
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associative TLB [ 29 ]. It has been assumed that the TLB have 64 entries for 

instructions and 64 entries for data. 

It has been also assumed that the TLB is dedicated to only the benchmark i.e., it 

has been assumed that the operating system kernel or other processes that usually 

can take entries in the TLB do not take these entries. As was mentioned above, the 

operating system kernel can use large pages and therefore usually take a small 

number of entries in the TLB. For that reason, there is  typically just an insignificant 

effect of a running operating system kernel on the TLB performance. 

In the analyzing process, the pages allocated to every process have been counted.  

For every page size, the total sum of memory space allocations of the process during 

its execution has been calculated. A large volume of physical memory with no need 

of swapping has been presumed. 

Figures 1a and 1b show the numbers of the TLB misses and the memory 

consumption of the crafty benchmark; whereas Figures 2a and 2b show the numbers 

of the TLB misses and the memory consumption of the parser benchmark. 

The benchmarks crafty and parser have produced similar results – The iTLB 

misses dramatically decrease when using 16KB pages and are almost eliminated. 

Actually, these two benchmarks characterize 10 out of the 12 benchmarks that have 

been run in our experiments. The relative iTLB miss percentage is diminutive for 

almost every benchmark we ran when employing 16KB pages. 

 

 

Figure 1a. Instruction TLB misses (in blue) and Memory Consumption 
(in red) of the Crafty Benchmark 
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Figure 1b. Data TLB Misses (in blue) and Memory Consumption (in red) 
of the Crafty Benchmark 

 

Figure 2a. Instruction TLB Misses (in blue) and Memory Consumption 
(in red) of the Parser Benchmark 
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Figure 2b. Data TLB Misses (in blue) and Memory Consumption (in red) 
of the Parser Benchmark 

It can also be noticed that the increase in memory space usage for crafty is 10.3% 

and for parser is only 0.69%. The additional memory utilization is without doubt 

worth the performance boost. Nowadays computer hardware has abundance of 

memory which is usually much more than a conventional user needs, so utilizing 

more memory for performance improvement looks like a quite good deal [30]. 

Concerning the data portion of crafty and parser, the dTLB misses are almost 

eliminated just when using 256KB pages. These are the results of almost all 

applications; however it should be noted that the dTLB misses of vpr (described 

herein below) and gcc (that we did not put a graph for it) have been almost 

eliminated at 32KB pages and on the contrary the dTLB misses of apsi have not 

been eliminated even at 256KB. Regarding memory space consumption for data, the 

space will be almost constant when increasing the page size . 

Figures 3a and 3b show the numbers of the TLB misses and the memory 

consumption of the apsi benchmark; whereas Figures 4a and 4b show the numbers 

of the TLB misses and the memory consumption of the vpr benchmark. 

The apsi and vpr benchmarks have somewhat dissimilar functioning. Actually, 

these benchmarks are with the poorest memory space usage results; however even 

when looking at the apsi and vpr results, the iTLB decreases to approximately 1/3 

and the memory space usage increases by approximately 2/3 at 16KB page size. Still 

such results appear to be acceptable considering today’s computer hardware which 

usually has large quantity of memory, especially since the introducing of the 64-bit 

microprocessors more than two decades ago [31]. 
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Figure 3a. Instruction TLB Misses (in blue) and Memory Consumption 
(in red) of the apsi Benchmark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3b. Data TLB Misses (in blue) and Memory Consumption (in red) 
of the apsi Benchmark 
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Figure 4a. Instruction TLB Misses (in blue) and Memory Consumption 
(in red) of the vpr Benchmark 

 

Figure 4b. Data TLB Misses (in blue) and Memory Consumption (in red) 
of the vpr Benchmark 

4. Conclusions 

It can be concluded that the traditional 4KB page size is not suitable for modern 

computer hardware. 16KB base page is much more suitable size for the allocation of 

code segments. 16KB base page almost eliminates iTLB misses for a large amount 

of applications without bring upon the computer hardware a high memory price tag. 

Allocating larger pages however, is not advisable because for nearly all applications 
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it barely decreases iTLB misses but for several applications, it can significantly 

increase the required memory space. 

The ending conclusion of this paper is that for large data objects, the operating 

system is supposed to allocate 256KB pages. On the other hand, for small data 

objects and for code segments, the operating system is supposed to allocate smaller 

pages in size of 16KB. For that reason, it is advised that new base page size of the 

new architectures will be 16KB. 
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