
International Journal of Hybrid Information Technology

Vol.8, No.8 (2015), pp.57-68

http://dx.doi.org/10.14257/ijhit.2015.8.8.05

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Virtual Memory Systems Should Use Larger Pages rather than

the Traditional 4KB Pages

Pinchas Weisberg and Yair Wiseman

Computer Science Department, Bar-Ilan University, Ramat-Gan 52900, Israel

wiseman@cs.biu.ac.il

Abstract

Choosing the best page size for Virtual Memory requires considering several factors. A

smaller page size reduces the amount of internal fragmentation. On the other hand, a

larger page needs smaller page tables. However, this paper argues that the main reason

to prefer a larger page is to increase the virtual to physical translation speed i.e. because

the size of a TLB is limited, to facilitate increasing of TLB coverage we have to use larger

pages

Keywords: Memory Management, Virtual memory, Memory Pages

1. Introduction

Over the history of memory management units (MMUs) of processors, their

hardware has employed page size of 0.5KB to 8KB. E.g. VAX developed by Digital

Equipment Corporation (DEC) in the mid-1970s used 512 bytes page size [1]. In the

mid-1990s Digital Equipment Corporation decided to upgrade its processors and

replace the old VAX by the DEC Alpha. The page size of DEC Alpha was

considerably increased to 8KB [2]. Sun 1 manufactured by Sun Microsystems and

launched in 1982 has a 2K bytes page size [3]. IA-32/x86 has been making use of

4KB page size since the mid-1980s [4] and even when they moved to x86-64 at

2003 the 4KB page size was remained [5].

Essentially, a 4KB page size has been employed for Virtual Memory since the

1960s. What's more, nowadays, the most widespread page size is still 4KB.

Selecting a page size is actually compromising between a number of concerns and

issues taken into account.

From one point of view, a larger page size will cause more fragmentation;

therefore selecting a smaller page size will save some memory space. Indeed, when

the physical memory is quite small, such a consideration is very significant because

too much load on a small memory can cause a Thrashing [6, 7]. However, nowadays

computer hardware usually has abundance of memory which is usually much more

than a conventional user needs, so the trashing issue is usually less important and

frequently inconsiderable.

In addition, when several processes share memory, the sharing is always of full

pages [8]. Therefore, if the page size is larger, the resolution will be poorer.

On the other side, selecting a larger page will enlarge the TLB coverage and as a

result will reduce the TLB misses and the necessity to read page tables in the main

memory.

Over the years when many processors have used the traditional 4KB; however,

the memory size has been upgraded from some hundreds of Kilobytes to several

Gigabytes, therefore we can forfeit some memory space so as to obtain higher

performance [9].

The most important motivation for have a preference of larger page is making the

translation time of virtual addresses to physical addresses better. In a virtual

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

Copyright ⓒ 2015 SERSC 58

memory scheme, the memory management unit (MMU) hardware translates each

virtual address generated by the CPU into a physical address. The page tables of all

the processes containing all the physical addresses for the possible virtual addresses

are stored in the main memory. This means that each access to a memory address

will be doubled, because an extra access for the translation will be needed. To

facilitate a shorter virtual to physical address translation time, the most recently

used addresses are stored in a Translation Lookaside Buffer (TLB). TLB is a high-

speed access cache implemented by a dedicated registers.

Some processors have just one level of TLB cache; whereas some processors like

Itanium 2 have two levels of TLB cache [10]. In the first level of the TLB memory,

Itanium 2 has 32 entries Instruction TLB cache and 32 entries Data TLB cache. In

addition, Itanium 2 has 128 entries Instruction TLB cache and 128 entries Data TLB

cache in the second level of the TLB memory.

If a TLB miss occurs at the first level, the second level is accessed. The penalty

for such a miss is just 2 clock cycles for a miss in the Instruction TLB and 4 clock

cycles in the Data TLB; however, if s miss occurs at the second level, an access to

the main memory is required because the physical address must be looked for in the

original page table in the main memory and then the physical address have to be

loaded into the appropriate TLB. Because an access to each of the TLBs must take

only very short time, the TLBs are built with only a small number of entries.

The term "TLB coverage" refers to the total amount of memory mapped by all of

the TLBs. Let us assume TLBs with 256 entries and a standard page size of 4KB. In

such a case the TLB coverage is only one megabyte of memory. Because the size of

the TLBs is constrained, to facilitate enlargement of TLB coverage, larger pages are

required. A different way for better performance can be an improvement of the

Memory Management Unit cache system [11].

However, the most common option for increasing the TLB coverage is by making

use of super-pages [12 , 13]. Many contemporary CPU architectures provide a

support for super-pages. Such an architecture allows the Operating System to make

use of a number of page sizes. Super-paging mechanism enables selecting a suitable

page size for any allocation.

A small page size will be selected for a small spatial locality with the purpose of

saving memory and a large page size will be selected for a large spatial locality with

the purpose of enlargement of the TLB coverage. The spatial locality of an

information segment can be analyzed as we suggested at [14].

E. g., very large pages are suitable for allocations of non-paged memory, such as

for mapping frame buffers or for the fixed pieces of the operating system kernel;

whereas small page size can be suitable for the kernel stack [15]. When super-pages

are used for paging the code segment and data segment of a user process, an

intermediate sized page should be selected. The average unused memory space

produced by internal fragmentation with too large pages might be substantial.

Writing even just one byte to such a page can be costly, because there is only one

dirty bit and there is a need to update the entire page.

Most of the modern Operating systems do not employ Super-pages, even though

most of the CPU architectures support Super-Pages [16]. So in point of fact only the

4KB page size has been employed for Virtual Memory systems in most of the

architectures since the 1960s. Actually, nowadays, the most frequent page size is

still 4KB. It should be noted however that Linux running on SGI Altix systems uses

a fixed page size of 16 KB for all processes, using the 16KB super-page of SGI

Altix [17]; rather than using the usual 4KB pages that supported as base pages by

SGI Altix.

Over the years, the factors that have an effect on the page size have been

changed. The common memory size of standard computers has been increased from

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

59 Copyright ⓒ 2015 SERSC

some hundreds of Kilobytes to several Gigabytes. Consequently, standard TLBs

cover only a small portion of a common memory of contemporary computers. In

addition, access times of standard contemporary disks have not kept up with

throughput augments. In last years, usual throughput has been enhanced by a factor

of 100; though, access time has enhanced by just a factor of 3 [18]. Therefore,

transferring of larger pages from and to a disk has become more reasonable.

2. Selecting Page Size Range Results

With the intention of assessing the best page size for virtual memory systems,

several benchmarks from the SPEC suite [19] have been run. The TLB misses have

been counted so as to observe the differences between the memory usages of a

variety of benchmarks employing various page sizes. The most acceptable

preference for a page size is when there will be a substantial reduction in TLB

misses but with almost no enlargement in memory space usage.

When making use of super-paging, many operating systems (e. g., HP, IRIX and

Solaris) employ the Allocation method i.e., the operating system kernel allocates a

large enough page when the first page fault occurs. These operating systems use this

method because it is simpler to allocate and map the entire superpage when the

operating system accesses the page at the first time and because not enough research

has been done about the possible advantages of the other complex methods [20]. In

this paper this scheme for employing super-paging is implemented.

Many processors supporting super-pages have a range of page sizes. In spite of

this, as mentioned above, there is no established strategy for the operating system

kernel to select the most appropriate size.

There are three major different methods to make use of Super-pages

 Allocation

When a page fault occurs, a large page will be allocated and all its base-pages

will be loaded into the memory. I. e., the page is considered as a super-page in the

page table without more ado. There are commercial OSes like Solaris MPSS [21]

that make use of this method for super-paging.

IRIX [22] and HP-UX [23] implement multiple page sizes in such a method. At a

page fault time, they allocate large enough pages. In IRIX the preferred page size is

specified by the user/compiler prior to the application execution by a system call

compiled into the application code. In HP-UX the page size is specified either by

the user like IRIX or transparently set by the operating system according to the size

of the required memory allocation.

Allocating and populating one large page at the same time is advantageous

because any access to the large page from the allocation time will not incur a TLB

miss and will also use only one TLB entry. In addition, transferring many base

pages from the secondary storage is less efficient than transferring one large page

entirely.

 Reservation

Unlike the allocation scheme, in reservation-based allocation, when the first

access to an address in a base page occurs, the entire super-page that contains this

base-page will be allocated, but only the base page will be populated. After that,

only the base pages in this super-page that induce page faults will be loaded from

the secondary storage to memory. When the number of the populated frames in the

super-page reaches a threshold, the missing pages will be fetched from secondary

storage to memory and the base pages will be promoted into one superpage.

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

Copyright ⓒ 2015 SERSC 60

In [24] Talluri et al., suggest a reservation based scheme with a TLB that can map

two fixed page sizes – 4KB and 64KB. Unlike Talluri et al., at [25] Navarro

suggests a reservation based scheme with multiple page sizes wherein promotion

can be done incrementally.

The main benefit of reservation based scheme as compared to full allocation

based scheme is that it defers loading of base pages until it will be more convinced

that more base pages included in the super-page will be used. It also makes the

launch time of a process shorter.

 Relocation

In a relocation based scheme, base pages are brought to the main memory. The

memory usage is frequently monitored so as to make a decision when it is beneficial

to promote several base pages to a super-page. When the system decides on

promotion, a contiguous area of memory is sought and the base pages are moved

into it. If not all of the base pages are resident in the main memory, the missing base

pages will be brought from secondary storage.

In another paper of Talluri et al., [26] they sugegst a relocation scheme wherein

there are two page sizes – 4KB and 32KB. The threshold they have set for relocation

is whether at least half of the base pages have been brought to the main memory.

Romer et al., [27] suggest a scheme for tracking potential promotions to super-pages

and deciding dynamically when it is beneficial to promote the base pages to one

super-page. According to their approach super-pages will be created only when it is

exceedingly needed therefore internal fragmentation is minimized.

In this paper a basic super-paging scheme is assumed in which just one of two

page sizes are selected, either the base page size or a super-page size. According to

this scheme, the strategy of the operating system kernel is allocating a fixed large

page only if the memory object is large enough and also there is enough memory

space for this memory object. When running the SPEC benchmark suite we

observed that dTLB misses decrease just with larger pages. This can be of help for

us on the way of deciding about the large page size appropriate for substantial data

segments.

3. Experiments Results

With the aim of counting the TLB misses and analyzing the memory usage of a

variety of page sizes, 12 applications from the SPEC suite have been simulated.

Such simulations of SPEC benchmarks in reality take a long time to come to an end,

therefore we traced each benchmark for only its first 48 hours. The hardware used

for these experiments was a 3.66GHz Intel(R) Xeon(TM) CPU. This hardware was

dedicated to these benchmark simulations. We used "valgrind" [28] which is a suite

of simulations based debugging and profiling tools for the Linux operating system.

One of "valgrind"'s tools called "Lackey" was adjusted to produce a trace of

memory references. The output of the adjusted tool incorporates a trace of page

references for all the page size that are power of 2 multiples from 4KB up to

256KB.

The traced output includes enormous data. Therefore, if this output was saved

into a file, it would swiftly enlarge to several gigabytes. To facilitate a solution for

this constraint, we have used an on-the-fly simulation. The traced output of

"valgrind" was redirected to another process via a pipe. The other process analyzed

the data and generated the results.

This analyzing process actually simulated an LRU based TLB and counted the

TLB misses for every page sizes. The simulated TLB of this process was a fully

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

61 Copyright ⓒ 2015 SERSC

associative TLB [29]. It has been assumed that the TLB have 64 entries for

instructions and 64 entries for data.

It has been also assumed that the TLB is dedicated to only the benchmark i.e., it

has been assumed that the operating system kernel or other processes that usually

can take entries in the TLB do not take these entries. As was mentioned above, the

operating system kernel can use large pages and therefore usually take a small

number of entries in the TLB. For that reason, there is typically just an insignificant

effect of a running operating system kernel on the TLB performance.

In the analyzing process, the pages allocated to every process have been counted.

For every page size, the total sum of memory space allocations of the process during

its execution has been calculated. A large volume of physical memory with no need

of swapping has been presumed.

Figures 1a and 1b show the numbers of the TLB misses and the memory

consumption of the crafty benchmark; whereas Figures 2a and 2b show the numbers

of the TLB misses and the memory consumption of the parser benchmark.

The benchmarks crafty and parser have produced similar results – The iTLB

misses dramatically decrease when using 16KB pages and are almost eliminated.

Actually, these two benchmarks characterize 10 out of the 12 benchmarks that have

been run in our experiments. The relative iTLB miss percentage is diminutive for

almost every benchmark we ran when employing 16KB pages.

Figure 1a. Instruction TLB misses (in blue) and Memory Consumption
(in red) of the Crafty Benchmark

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

Copyright ⓒ 2015 SERSC 62

Figure 1b. Data TLB Misses (in blue) and Memory Consumption (in red)
of the Crafty Benchmark

Figure 2a. Instruction TLB Misses (in blue) and Memory Consumption
(in red) of the Parser Benchmark

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

63 Copyright ⓒ 2015 SERSC

Figure 2b. Data TLB Misses (in blue) and Memory Consumption (in red)
of the Parser Benchmark

It can also be noticed that the increase in memory space usage for crafty is 10.3%

and for parser is only 0.69%. The additional memory utilization is without doubt

worth the performance boost. Nowadays computer hardware has abundance of

memory which is usually much more than a conventional user needs, so utilizing

more memory for performance improvement looks like a quite good deal [30].

Concerning the data portion of crafty and parser, the dTLB misses are almost

eliminated just when using 256KB pages. These are the results of almost all

applications; however it should be noted that the dTLB misses of vpr (described

herein below) and gcc (that we did not put a graph for it) have been almost

eliminated at 32KB pages and on the contrary the dTLB misses of apsi have not

been eliminated even at 256KB. Regarding memory space consumption for data, the

space will be almost constant when increasing the page size .

Figures 3a and 3b show the numbers of the TLB misses and the memory

consumption of the apsi benchmark; whereas Figures 4a and 4b show the numbers

of the TLB misses and the memory consumption of the vpr benchmark.

The apsi and vpr benchmarks have somewhat dissimilar functioning. Actually,

these benchmarks are with the poorest memory space usage results; however even

when looking at the apsi and vpr results, the iTLB decreases to approximately 1/3

and the memory space usage increases by approximately 2/3 at 16KB page size. Still

such results appear to be acceptable considering today’s computer hardware which

usually has large quantity of memory, especially since the introducing of the 64-bit

microprocessors more than two decades ago [31].

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

Copyright ⓒ 2015 SERSC 64

Figure 3a. Instruction TLB Misses (in blue) and Memory Consumption
(in red) of the apsi Benchmark

Figure 3b. Data TLB Misses (in blue) and Memory Consumption (in red)
of the apsi Benchmark

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

65 Copyright ⓒ 2015 SERSC

Figure 4a. Instruction TLB Misses (in blue) and Memory Consumption
(in red) of the vpr Benchmark

Figure 4b. Data TLB Misses (in blue) and Memory Consumption (in red)
of the vpr Benchmark

4. Conclusions

It can be concluded that the traditional 4KB page size is not suitable for modern

computer hardware. 16KB base page is much more suitable size for the allocation of

code segments. 16KB base page almost eliminates iTLB misses for a large amount

of applications without bring upon the computer hardware a high memory price tag.

Allocating larger pages however, is not advisable because for nearly all applications

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

Copyright ⓒ 2015 SERSC 66

it barely decreases iTLB misses but for several applications, it can significantly

increase the required memory space.

The ending conclusion of this paper is that for large data objects, the operating

system is supposed to allocate 256KB pages. On the other hand, for small data

objects and for code segments, the operating system is supposed to allocate smaller

pages in size of 16KB. For that reason, it is advised that new base page size of the

new architectures will be 16KB.

References

[1] D. W. Clark and J. S. Emer, "Performance of the VAX-11/780 Translation Buffer: Simulation and

Measurement", ACM Transactions on Computer Systems (TOCS), Vol. 3, No. 1, pp. 31-62, New-York,

(1985).

[2] J. H. Edmondson, P. I. Rubinfeld, P. J. Bannon, B. J. Benschneider, D. Bernstein, R. W. Castelino, E.

M. Cooper, D. E. Dever, D. R. Donchin, T. C. Fischer, A. K. Jain, S. Mehta, J. E. Meyer, R. P. Preston,

V. Rajagopalan, C. Somanathan, S. A. Taylor, G. M. Wolrich, "Internal Organization of The Alpha

21164, A 300-MHz 64-Bit Quad-Issue CMOS RISC Microprocessor", Digital Technical Journal Vol. 7,

No. 1, (1995).

[3] G. Larry, R. Lyon, L. Delzompo and B. Callaghan, "The Open Network Computing Environment", In

The Sun Technology Papers, pp. 3-12, Springer, New York, (1990).

[4] E. Grochowski and K. Shoemaker, "Issues in the Implementation of the i486 Cache and Bus", In IEEE

International Conference on Computer Design: VLSI in Computers and Processors, ICCD'89, pp. 193-

198, (1989).

[5] T. W. Barr, A. L. Cox and S. Rixner, "Translation Caching: Skip, Don't Walk (The Page Table)",

In ACM SIGARCH Computer Architecture News, Vol. 38, No. 3, pp. 48-59, New York, NY, USA,

(2010).

[6] M. Reuven and Y. Wiseman, "Medium-Term Scheduler as a Solution for the Thrashing Effect", The

Computer Journal, Oxford University Press, Swindon, United Kingdom, Vol. 49, No. 3, pp. 297-309,

(2006).

[7] M. Reuven and Y. Wiseman, "Reducing the Thrashing Effect Using Bin Packing" In Proceedings of

Modeling, Simulation, and Optimization Conference, MSO-2005, Oranjestad, Aruba, pp. 5-10, (2005).

[8] M. Geva and Y. Wiseman, "Distributed Shared Memory Integration", In Proceedings of IEEE

Conference on Information Reuse and Integration (IEEE IRI-2007), Las Vegas, Nevada, pp. 146-151,

(2007).

[9] P. Weisberg and Y. Wiseman, "Using 4KB Page Size for Virtual Memory is Obsolete", In Proceedings

of IEEE Conference on Information Reuse and Integration (IEEE IRI-2009), Las Vegas, Nevada, pp.

262-265, (2009).

[10] Intel, Intel Itanium 2 Processor Reference Manual – For Software Development and Optimization,

Document-No.: 251110-003, (2004).

[11] B. Abhishek, "Large-Reach Memory Management Unit Caches", In Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 383-394, Davis, California, USA,

(2013).

[12] M. Itshak and Y. Wiseman, "AMSQM: Adaptive Multiple SuperPage Queue Management", Special

issue of the International Journal of Information and Decision Sciences (IJIDS) on the best papers of

IEEE Conference on Information Reuse and Integration (IEEE IRI-2008), Vol. 1(3), pp. 323-341,

(2009).

[13] Y. Wiseman, "ARC Based SuperPaging", Operating Systems Review, Vol. 39(2), pp. 74-78, (2005).

[14] P. Weisberg and Y. Wiseman, "Efficient Memory Control for Avionics and Embedded Systems",

International Journal of Embedded Systems, Inderscience Publishers, Vol. 5, No. 4, pp. 225-238, (2013).

[15] Y. Wiseman, J. Isaacson and E. Lubovsky, "Eliminating the Threat of Kernel Stack Overflows", Proc.

IEEE Conference on Information Reuse and Integration (IEEE IRI-2008), Las Vegas, Nevada, pp. 116-

121, (2008).

[16] S. Yuki, B. Gerofi, and Y. Ishikawa, "Revisiting Virtual Memory for High Performance Computing on

Manycore Architectures: A Hybrid Segmentation Kernel Approach" In Proceedings of the 4th ACM

International Workshop on Runtime and Operating Systems for Supercomputers, Article no. 3, (2014).

[17] J. Guido, M. S. Müller, W. E. Nagel, and S. Pflüger, "Accessing Data on SGI ALTIX: An Experience

With Reality" In Proceedins of 4th Workshop on Memory Performance Issues, (WMPI-2006), Austin,

Texas, (2006).

[18] P. Schmid, "15 Years Of Hard Drive History: Capacities Outran Performance", Tom's Hardware, (2006).

[19] J. L. Henning, "SPEC CPU2006 Benchmark Descriptions" ACM SIGARCH Computer Architecture

News, Vol. 34, no. 4, pp. 1-17, (2006).

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

67 Copyright ⓒ 2015 SERSC

[20] D. Yu, M. Zhou, B. R. Childers, D. Mossé and R. Melhem, "Supporting Superpages in Non-Contiguous

Physical Memory" In proceedings of IEEE 21st International Symposium on High Performance

Computer Architecture (HPCA-2015), pp. 223-234, San Francisco Bay, California, USA, (2015).

[21] R. McDougall, "Supporting Multiple Page Sizes in the Solaris Operating System", Sun BluePrints On-

Line, March (2004).

[22] N. Ganapathy and C. Schimmel, "General Purpose Operating System Support for Multiple Page Sizes",

In Proceedings of the USENIX 1998 Annual Technical Conference, USENIX Association, No. 98, pp.

91-104, New Orleans, (1998).

[23] I. Subramanian, C. Mather, K. Peterson, and B. Raghunath, "Implementation of Multiple Pagesize

Support in HP-UX", In Proceedings of the USENIX 1998 Annual Technical Conference, USENIX

Association, New Orleans, (1998).

[24] M. Talluri and M. D. Hill, "Surpassing the TLB performance of super-pages with less operating system

support", In Proceddings of 6th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), San Jose, CA, USA, pages 171-182, (1994).

[25] J. Navarro, S. Iyer, P. Druschel, and A. Cox, "Practical, transparent operating system support for

superpages", In Proceedings of the 5th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), (2002).

[26] M.Talluri, S. Kong., M. Hill and D. Patterson, "Tradeoffs in Supporting Two Page Sizes", In

Proceedings of the 19th Annual International Symposium on Computer Architecture, pp. 415-424,

(1992).

[27] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad, "Reducing TLB and memory overhead using online

superpage promotion", In Proceedings of the 22nd Annual International Symposium on Computer

Architecture, pages 176-187, (1995).

[28] N. Nethercote and J. Seward, "Valgrind: a framework for heavyweight dynamic binary instrumentation",

ACM Sigplan notices, vol. 42, no. 6, pp. 89-100, (2007).

[29] S. Masaya, "A 800 MHz single cycle access 32 entry fully associative TLB with a 240 ps access match

circuit", In proceedings of 2001 IEEE Symposium on VLSI Circuits, Digest of Technical Papers, pp.

231-232, (2001).

[30] P. Weisberg and Y. Wiseman, "Virtual Memory Systems Should use Larger Pages", Advanced Science

and Technology Letters, (2015).

[31] K. Les and N. Margulis, "Introducing the Intel i860 64-bit microprocessor", IEEE Micro, Vol. 4, pp. 15-

30, (1989).

Authors

Pinchas Weisberg, got an M.Sc. from Bar-Ilan University and he

is now about to finish his PhD thesis in the Computer Science

department of Bar-Ilan University. Mr. Weisberg's research interests

include Efficient Memory Handling, Embedded Systems and

Operating System Kernel Manipulation. Mr Weisberg is now with the

Computer Science and the Math departments of Bar-Ilan University

in Ramat-Gan, Israel.

Yair Wiseman, got a Summa Cum Laude M.Sc. and a PhD from

Bar-Ilan University and completed two Post-Docs - one at the

Hebrew University of Jerusalem and one in Georgia Institute of

Technology. Dr. Wiseman's research interests include Process

Scheduling, Hardware-Software Codesign, Memory Management,

Computer Clusters, Data Compression, JPEG, Embedded Systems,

Real-Time Systems, Operating Systems, Computational

Transportation Science and Intelligent Transportation Systems. Dr.

Wiseman is on the editorial board of several journals, a member of

dozens of conference committees and a reviewer of many scholarly

journals. Dr. Wiseman authored two books as well. In addition, Dr.

Wiseman has been teaching in many institutes including Bar-Ilan

University, The Hebrew University of Jerusalem, Israel Aircraft

International Journal of Hybrid Information Technology

Vol.8, No.8 (2015)

Copyright ⓒ 2015 SERSC 68

Industry, Holon Institute of Technology and Jerusalem College of

Technology. Dr. Wiseman has been supervising many graduate

students and an interesting point is that Albert Einstein is Dr.

Wiseman's academic great-great-grandfather (i.e. the advisor of the

advisor of the advisor of Dr. Wiseman's advisor). Dr. Wiseman has

collaborated with other partners and received research grants to run

an active laboratory from inter alia Sun Microsystems, Intel, Polak

Foundation and the Open University. Dr. Wiseman is an international

expert who has reviewed and evaluated several large projects of the

European Union, Israel Science Foundation, MB Logic and more. Dr.

Wiseman's papers have been published in many venues around the

world.

